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Abstract

With Java becoming an increasingly important language in the HPC sector and th
Cell Broadband Engine (Cell/B.E.) achieving real-life performance aarasfimagnitude
higher than preceding computer generations coupling these two compooeltpmovide
both the Java world and the Cell ecosystem with interesting opportunitiepePuse of
the Cell/B.E.'s specialized Synergistic Processing Units (SPU) is the key lopeigor-
mance results. Therefore a special approach to exploit their full pwercessary which
must also pay attention to the limited computing environment they provide. The solutio
presented in this thesis consists of running a Java Virtual Machine (J¥iMijeoCell/B.E.'s
general purpose PowerPC Processing Unit (PPU). The JVM is eeddndjenerate and ex-
ecute native machine code for the SPUs at runtime thus requiring only little gpéuweir
limited local store memory while promising a high performance.
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1 Introduction

The structure of this thesis is as follows: In section 1 the tmain components making up the
project, Cell/B.E. and Java will be introduced and examinedseBaon some common prop-
erties they provide the motivation for this project will bepéained. In section 2 a number of
different concepts for the realization are discussed arahalasion is drawn on which concept
to base further work. An existing implementation of a JVM ethis suitable for the concept
is also introduced. In section 3 the architecture of the ehal/M is discussed as well as the
design for Java on Cell/B.E. and the resulting steps for thdementation. Section 4 then
presents a number of possible implementation variationshiese steps along with potential
issues and their solutions. In section 5 the resulting pyps®implementation is evaluated re-
garding capabilities and performance and some recommendatoncerning the programing
model are given. Section 6 concludes this thesis and in itdipak is given for future devel-
opment in this area as well as a comparison with other refaigécts. Finally in this section a
conclusion and review of the work is performed.

As explained above in this section both Cell/B.E. and Java véllintroduced including an
overview over their history, the motivation behind theea&tion and the respective design goals.
As they share a number of interesting capabilities thedebeifurther examined and it will be
explained how the motivation for this project is derivedifrthem.

1.1 The Cell Processor

1.1.1 Motivation

With Moore’s Law still holding up at the beginning of the 2tsntury the trend might be com-
ing to a halt. As modern microprocessors would just be acatdd by increasing the clock
frequency this would also result in an increased currerkalga as well as an increase in the
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generated heat. Additionally memory bandwidth was unableatch up with the CPU fre-
guency thus resulting in stalls of the CPU when waiting foadabm the main memory. To
circumvent the increase of clock frequencies as a way teasg computational speed micro-
processor developers were increasingly employing moktédesigns where multiple processor
cores are located on one chip. This way the chip can thealigt@chieve the same computa-
tional speed at a lower frequency and thus with less heat amdrd leakage. However under
most situations it is difficult to use several general pueposres to their full capacity hence
wasting energy and space on the chip. A better solution wers isethe coupling of a general
purpose core which runs the operating system with seveegiazed stripped-down cores to
offload computationally intensive tasks. This design hanbealized in the Cell Broadband
Engine Architecture (CBEA) [IBMO06].

Cell/B.E. was originally thought up and jointly developedwrd 2001 by Sony, Toshiba and
IBM (STI) as the basis for Sony’s next generation of PlayStagjaming consoles, the PlaySta-
tion 3. Its planned use would outline the rough requiremémtghe CPU which are explained

in the following.

Provide 33 times the performance of the PlayStation 2

This huge leap in performance would require a novel desigmageh, simply increasing the
clock frequency was not expected to yield the desired padorce. In the end the PlayStation
3 would achieve around 33 times the performance of the Paip®t2 within a development

time of 6 years thus far outperforming Moore’s Law.

High performance in mathematical (physics, graphics) calcula tions

The goal was to achieve a high performance with linear algms at the expense of technolo-
gies such as extensive branch prediction and out-of-osaEution commonly found in general

purpose processors. This goal also favors a single ingirnyanultiple data (SIMD) approach

in which one instruction works with multiple data in parall€his technique is commonly seen
in vector processors but lately also in PCs with multimediaesions such as Intel's MMX and

SSE or AMD’s 3DNow!
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High single-precision floating-point performance

During design it was decided that a high single-precisiafopmance is sufficient for a gaming
console. This would allow to spare some complexity that comigh a full double-precision
pipeline however would also result in a reduced doubleipi@t performance.

Stream-like high-bandwidth applications

It was expected that the applications would employ algor#hvhich loop over vast amounts of
data coming in frequently at a high rate. This allows the iéeckure to emphasize bandwidth
over latency which is also reflected in its name, Cell Broadliamgine. This means that while
data may take some time until it is available huge amountsbeatnansmitted in a relatively
short time thus outweighing the latency once enough datanstnitted.

1.1.2 History

In 2001 IBM got together with Sony and Toshiba to achieve theals and design a radical new
computing architecture. Sony wanted to build the CPU fortRkiyStation 3, IBM had decades
of experience in microprocessor design while Toshiba waatdas a high-volume manufacturer
of consumer devices and was also interested in producingb@séd HDTV television sets.
STI set up its headquarter, the STI Design Center (STIDC) irtiAugexas. Just on IBM’s side
around 400 Mill. $ were spent involving 11 IBM locations agdle entire globe and several
hundred employees. The main design stage lasted from 2@0®when the first prototypes
of Cell/B.E. were officially presented.

1.1.3 Implementation

The first publicly available implementation of the CBEA wastigad in the PlayStation 3
and in the IBM Cell Blades which were released in 2006. Detaileceming the components
making up Cell/B.E. are based on this first implementation tvisemmonly runs at 3.2 GHz
and features one general purpose code and eight speciasgucpres. An overview of this
implementation is given in [IBM]. Tests which are documeniedHac07] have shown that
even this first generation is able to achieve near-peak peaioce at 99.14% with specialized
workloads.

10



1.1 The Cell Processor

Cell Broadband Engine Processor

Figure 1.1: Photo of the Cell die [IBM]

A practical comparison with other architectures is givefMfSO" 05]. The table comparing
the raw numbers of some architectures is reproduced as|/Tdble

\ Cell X1E \ AMDG64 \ IAG4 \
Component 1 SPE All 8 SPEs (MSP) - -
Architecture SIMD | Multicore SIMD | Multichip Vector | Superscalar VLIW
Clock (GHz) 3.2 3.2 1.13 2.2 14
DRAM (GB/s) 25.6 25.6 34 6.4 6.4
SP Gflop/s 25.6 204.8 36 8.8 5.6
DP Gflop/s 1.83 14.63 18 4.4 5.6
Local Store 256KB 2MB — — —
L2 Cache — 512KB 2MB 1MB 256KB
L3 Cache — — — — 3MB
Power (W) 3 “40 120 89 130
Year 2006 2006 2005 2004 2003

Table 1.1: Comparison of different processor types inclg@ell/B.E.

General Purpose Core

In order to maintain compatibility with legacy applicat®oand have a good starting point an
existing processor architecture was to be used as the loasisefgeneral purpose core. IBM’s

11
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PowerPC architecture [Wik07], which has a long traditiorthe field of high-performance
computing and has also proven to be a very extensible andtilerarchitecture was destined
to be this base. In the context of Cell/B.E. it is called the R&@Processing Unit (PPU).
It is a RISC core with two hardware threads, no out-of-ordexcekion, two pipelines and
IBM’s SIMD-extension VMX. It may be operated in 32-bit or 64-tmode depending on which
some semantics change. For example pointer sizes depefine onode with 32-bit pointers
in 32-bit mode and likewise for 64-bit mode. Additionallyetlaccessible size of the registers
changes in the same fashion. The register set providedsteradi 32 integer, 32 floating-
point and 32 vector registers. As commonly the case with RIBQitectures only certain
assembler instructions are able to access the memory wiloigt imstructions work only on
register contents. Additionally the assembler instruttiare encoded in only a few different
formats with all instructions having the same fixed lengths.

When the PPU is coupled with a PowerPC Processor Storage Sebs{PPSS) which in turn
contains an L2 cache and a bus interface it is called the RR@vBrocessing Element (PPE).

Special Purpose Core

The special purpose core is called the Synergistic Praugdsnit (SPU) and also features a
RISC instruction set with SIMD extensions, no out-of-ordgecution and two pipelines. Due
to the design as a gaming console only single-precisiorutzlons are fully pipelined in the
current implementation while double-precision is not arglds less performance. Theoreti-
cally each SPU can achieve a peak performance of 25.6 GRidsingle precision.

The SPU contains no cache however has a large register s&8 P8-bit wide unified registers
which can simultaneously store a number of integer or flgapiaint numbers as those are less
in size than 128 bit. Therefore those 128 bit or 16 byte a@raiferred to as a quadword as four
32-bit words can be fit into one quadword at once. Alternétittee register contents may also
be regarded as a number of 4-bit and up to 128-bit valuesxtt ayout and number of values
stored depending on the instruction that handles the s¥glthen the register is handled with
a scalar instruction the leftmost word, bytes 0, 1, 2, andr&,called the preferred slot. For
scalar types of up to 32-bit the data is stored right aliginettié preferred slot while larger data
types are stored left aligned in the entire register.

1This peak performance number is calculated as follows: abawed vector instruction such as multiply and
add performs two operations on four values which equalst @gérations each cycle. Multiplied by a clock
frequency of 3.2 GHz this results in 25.6 GFlops

12
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Preferred Slot Byte index

0 1 2 3|4 5 6 7 8 9 10 11 12 13 14 15

HALFWORD

ooneesvere [P VP TP TP

DOUBLEWORD

QUADWORD

Figure 1.2: Register layout in SPU registers according to [(BHI

The SIMD approach taken in the SPU is pervasive meaning thag¢gisters can contain a

number of values of the same type while almost all instrungtiact on all values contained
within one register. For example the instructions to add tegisters take three registers as
operands, two input and one output registers. Depending®@mexact instruction used either
the eight 16-bit values or halfwords from the first input stgr are added two their respective
counterparts in the second input register and written t@tieect slots in the output register or
the same may be done for the four 32-bit words or for the twbi6doublewords.

instruction registers
a|lb|c|d

/ YV VvV VvV Vv

add word (output, input 1, input 2) a+w|b+x|c+y|d+z
N N A

X Yy Z

Figure 1.3: SIMD arithmetic

Currently the Cell/B.E. chip comes with 8 SPUs, each of them leauwith their own local
store (LS) memory of 256 KiB. The LS is the only memory direcisailable to the SPU, all
other memories are only accessible from the SPU via spe@ehanisms. The LS has to store
instructions as well as data. It allows for a peak bandwidtblo6 GB/s. However for the
SPU loading from and storing to the LS is only possible wittb§& at once at 16-byte aligned
addresses. This is ensured by having all load and storeigtisins in the instruction set force
the four least significant bits of an address to zero reguitina multiple of 16. Each load

13
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and store instruction also loads or stores the contents ehare 16-byte quadword register at
once.

Exchanging data with the main memory has to be done usingcéxXpirect Memory Address
(DMA) transfers. These transfers can be set up by the SPU thradyPU. They are then served
autonomously and asynchronously by a designated DMA clterticalled Memory Flow Con-
troller (MFC) which stores the requested data in LS or main orgnThe maximum bandwidth
of DMA transfers is 25.6 GB/s.

The functional unit of SPU core, MFC and LS is called the Sgrstic Processing Element
(SPE).

Synergistic Processor Elements for High (FL) ops / Watt

SPE) SPE) SPE) SPE) SPE)} SPE) SPE) SPE)

EIB {up to 26 Blcycle)

16Bfcycle 16B/cycle
16B/cycle (2x)

T

MIC

Dl RRAC 1/0
XDR™

64 -bit Power Architecture w/\VMX for
Traditional Computation

Figure 1.4: Block view of Cell/B.E.including bandwidth numg¢iBM]
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1.1 The Cell Processor

Memory Flow Controller

The MFC is responsible for transferring data between LS aaithmmemory. Once it has been
instructed correctly it performs the transfers in a conglleiutonomous fashion in the back-
ground. Each core, PPU and SPUS, features a dedicated ME@#yaransfer data both to
and from the other cores.

The DMA transfers performed by the MFCs are subject to a nurobestrictions

» Transfers of 1, 2, 4 or 8 byte must be naturally aligned winneans that both the source
and target address must be divisible by the size of the ansfdditionally they must
share the same offset to the next lower 16-byte boundary.

» Transfers of a multiple of 16 byte up to 16 KiB must be alighed 16-byte boundary.

Maximum performance is reached when both addresses anedlig 128 byte and the transfer
size is a multiple of 128 byte.

The MFC also supports so-called MFC lists but only on the SBluth a list is stored in the

LS and consists of a number elements that contain a main nyesdress, a transfer size and
a stall-and-notify bit which may be used to notify the SPU wiaecertain element in the list

has been reached that requires some preparation. The stomdain up to 2048 elements
and the restrictions for DMA transfers apply for list tragrsf as well. When passing this list's
address to the SPU’s MFC it will autonomously retrieve trerednts in that list and perform

the transfers. Depending on the instruction used the eangfiay either load or store data from
or to the main memory. While the main memory addresses in shenlay be non-contiguous

only one LS source or target address may be given so the atfea Iu§ is contiguous.

The MFC also provides facilities for atomic synchronizatid hese allow accessing and locking
an area of 128 byte in the main memory so no other unit willrfete until work on this area
has been completed. Also, locking this area may be used fmhsgnization so as to inform
other units that the locking unit is currently performingeatain work item.

Element Interconnect Bus

Connecting the PPU, SPUs, main memory and an external iogei$aa high speed ring bus,
the Element Interconnect Bus (EIB). In order to satisfy thenthgndwidth requirements of

15



1 Introduction

the Cell/B.E. it provides two lanes in each direction, toglanbandwidth of 25.6 GB/s for all
connected devices.

Main Memory

The main memory is supplied by RamBus and features their Egtieata Rate (XDR) tech-
nology and is connected to the EIB with a special Memory fatex Controller (MIC). It can
provide for a bandwidth of 25.6 GBit/s but has to be solderagtiédboard. The first generation
of IBM’s Cell Blade came with just 1 GB of XDR main memory.

1.1.4 Applications

Due to the design of the CBEA a certain approach for runningiegipns on and benefiting
from the performance of Cell/B.E. is recommended. The gemmmgose PPU with its full
instruction set is generally used to run the operating systad handle 10 and networking
while the specialized SPUs will only be employed for certzomputationally intensive tasks.
This approach usually requires careful analysis of the lpaxkin question to determine which
parts may be executed on the SPU and how they can be paedleliz

With SDK3, the latest version of the SDK which will be furthdgscribed in the next section,
many different forms of cooperation between the SPUs and &Bpossible. To synchronize
the units a number of methods is available to them. The SPBRK can send small messages
via so-called mailboxes and signals among themselves esa@hared data structures in main
memory or in one of the SPUs’ LS via DMA transfers. The mostigtitforward approach is to
let the PPU create some SPU threads and execute an algorittimerm while controlling and
synchronizing the state of the SPUs. However it is also ptess$o just start up a number of
SPUs which can synchronize themselves. Additionally itdsgible to exchange the program
code while leaving the data in place thus allowing to opeoat®ne set of data with multiple
programs.

Due to the lack of a cache on the SPU most applications useop#tie SPU's LS to create
special buffers for DMA transfers and other regularly regdidata. Because of the high band-
width of the LS this approach can be tailored to the algorthmeeds and delivers very high
performance. A popular approach is to set up a double-boffeccheme where a DMA transfer
Is pulling data from the main memory into one buffer while #wdual program is working on

16
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the data available in the other buffer. Once this step is der@uffers are switched. This
scheme is possible due to the autonomous nature of the DM#atien which allows the SPU
to keep executing code while data is being fetched from the mamory.

To summarize running programs on Cell/B.E. does not autoaibticesult in a higher perfor-
mance as may be the case with traditional multi-core arctuites. Yet Cell/B.E. provides a
great potential for specialized applications once theyehmeen adapted to the unique architec-
ture.

1.1.5 Linux on Cell/B.E. and Cell SDK

The Open Source operating syste;n}me2 has been extended by STI to be able to run on
Cell/B.E. and make use of the SPUs. IBM provides a complete aoét\Wwevelopment

for developing SPU-accelerated applications on Linuxotitains a port of the Gnu Compiler
GCC" which can compile C, C++, Ada and Fortran applications for th&) S run-time library

to manage SPU access (libspe2) [IBMO07d], additions to the Belwgger (GD% to debug
Cell/B.E. applications and a Cell/B.E. simulator which may bedusn non-Cell/B.E.-hardware
to simulate such a syst@nA special C library for embedded systems with a low memory
footprint, newlil@ is used to provide SPU programs with frequently requirecttionality. In
order to facilitate access to the SPU’s LS it can be memorgped into the PPU’s memory
thus allowing the PPU to read and write the LS as if it werermdi memory, albeit at a lower
speed.

System calls from the SPU

System calls on the SPU such as opening files or printing tov@rial are handled using special
PPE-assisted-calls which instruct the PPU to service an'sSRiduest. This mechanism is
based on the stop-and-signal functionality and works bySR& issuing a special assembler
instruction calledstop . The only argument to this instruction is a 14 bit stopcodacéithis
command is executed the SPU is stopped and the PPU notifieithg the libspe2 runtime

2http://www.kernel.org

Shttp://www.bsc.es/projects/deepcomputing/linuxolicel

“http://gce.gnu.org/

Shttp://sourceware.org/gdb/

61BM has also extended its proprietary XLC compiler familyjoable to compile code for the PPU and the SPU.
As they have not been used in this thesis they will not be raeatl further

’http://sourceware.org/newlib/
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management library applications can add individual caltfanctions for each stopcode. By
convention the stopcode values may range from 0x2100 toRFx2dith the first 4 available
values being reserved for operating systems functions asit® operations.

SPU

arg U
arg n

STOP(STOPCOdE)

*pointer

opcode + LS pointer

next instruction.

. place 1. receive
return stop-and-signal
value + stopcode

PPU

6. resume

5. return
2.call accord
to stopcode callbac
function

Figure 1.5: Stop-and-signal mechanism

3.fetch
arguments

The stop-and-signal notification is initially handled byitaspe2 function which depending on
the stopcode calls the appropriate callback. The callbaoktions are being passed the address
of the respective SPU’s LS in the memory map and the offsetebtiginatingstop instruc-
tion within the LS. Again by convention the next 4 bytes dilgtollowing thestop instruction
contain further data for the callback function. This dataally consists of an opcode designat-
ing the actually requested functionality within the setufidtions provided by this callback as
well as a pointer to a block of arguments within the LS. Duehi® $PU’s 16-byte alignment
restriction each argument is usually 16 byte large so thaialy be handled as four 4-byte or
two 8-byte elements.

Once the callback function on the PPU is done it optionalbyest a return value directly in the
LS in place of the first argument in the argument block. Agtia,callback function may place
up to 16 byte as a return value in varying granularities. E#en on the SPU is then resumed
with the instruction following the LS pointer.

18



1.2 Java

Linking SPU and PPU programs

In order to allow running an SPU program from a PPU progranukion Cell/B.E. provides a
mechanism to embed the SPU part within a PPU program as dedén [IBM07a] Chapter 14,
Objects, Executables and SPE Loadikgr this mechanism the CBEA Embedded SPE Object
Format (CESOF) has been defined.

Both the SPU and the PPU toolchain produce ELF objects wiijbidtsaddress spaces. Using
the ppu-embedspu tool allows taking the SPU object file and wrapping it into dyeat file
suitable for linking with the PPU program. This object filopides only one symbol of the
type spe _program _handle _t which can be used in the PPU program and then passed to the
appropriate libspe2 functions that load or run the assedi8PU program.

1.2 Java

In its barely 15 years of existence Java has risen to becomefaie most famous program-
ming languages as regularly shown by IhW©BE Programming Community Inc@xA good
introduction to Java is given in [UII07]. Some important @sfs concerning its history and
design goals as well as its current state will be reprodueeé. h

1.2.1 History

The origins of Java trace back froject Oakwhich was started in 1991. It was originally
envisioned to provide a virtual machine for cable TV set topds and other media devices and
enhance them with interactive functions. This virtual maetwould act as an abstraction layer
and allow the code to run on a multitude of different platferas long as an implementation
of the virtual machine was available. However this markdtrbt prove very rewarding so a
change of directions was made towards the Internet. Withitheal machine it was possible to
download small programs, so called applets, from the lieteand execute them in the browser.
This mechanism also maintained a high level of safety dubdwirtual machine acting as an
intermediate layer between the applet and the computestairees. After the great success of
the applets Java was soon extended to provide functiorfalitytand-alone desktop programs

8http://www.tiobe.com/tpci.htm
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as well as server applications and now has become one of thepopular and widely spread
programing languages.

The fact that Java and its source were made available at ndgdSun Microsystems also
contributed to the wide adoption of the Java platform. Havesince it was developed in a
closed-source non-free fashion the development of maeyJvls, free Java compilers and the
free class libraryGNU Classpatho escape thidava Trapwvas started. Beginning in November
2006 Sun started to publish the source code of their java temgnd the Hotspot virtual
machine under a free license which was soon followed by thentaof the class library.

1.2.2 Implementation

Java was originally designed with a number of goals in mind.il§ther programming lan-
guages have also fulfilled some of these goals before Javtheréisst to combine these leading
to its great success. Some of the most important aspectstae: here.

Portability

Java programs should supportcampile once, run anywhengolicy. To achieve this goal a
machine-independent bytecode language was defined. Adayaler could then compile Java
source code to bytecode which is interpreted by the JVM. #althlly Just-in-Time (JIT) com-
pilers may translate the bytecode at runtime into the ma&cbade of the current architecture
the JVM runs on.

Object-Orientation with primitive types

To provide the best of both object-oriented and procedarajllages Java supports both objects
as well as a few primitive types. Pure object-oriented laggs, those without any primitive
types, such as Smalltalk had proven too be to restrictinfppaance-wise even though they
provided a clearer view on the program.

Along with object-orientation Java also implements acpessiissions. Classes and class mem-
bers may be qualified with further keywords as shown in tat#evhich define who may access
a certain class or member.
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| | private | default \ protected \ public |

class - package access - no restrictions
member|| same object private + same packagedefault+ subclasses no restrictions

Table 1.2: Overview of Java access permissions

Security

Due to the virtual machine as an intermediate layer betwkenJava program and the host
system it is possible to restrict usage of the host systeessurces. Fine-grained security
permissions can be defined depending on the origin of theptaggam. This allows to fetch
bytecode via network from untrusted sources and safelyugaetin the virtual machine. The
most well-known case for this are the Java applets, smadjrpros which are embedded into
a website and loaded from the potentially malicious seresting the website. Additionally
a JVM also includes a bytecode verifier which checks all lydecinstructions before their
execution to ensure that they do not execute potentiallynhadrinstructions such as illegal
branches and access to private data.

Stack based

The Java bytecode was designed to simulate a stack-bagetkeiare. Since no assumption
about the available register set or stack on the targettaatbre is done this allows the JVM to
perform appropriate machine-dependent optimizationsekample CISC architectures such as
x86 commonly provide only a few registers while RISC archiiees such as PowerPC usually
come with a larger register set. Depending on this the JVM tnatp keep more or less stack
elements in registers.

Multi-Threaded

Modern computer systems ranging from mobile devices ovektdps to servers almost always
have to perform multiple tasks concurrently. In order taomemodate this fact the Java platform
supports multi-threading at the language, the library &edJVM level. This means that the
language provides low-level instructions to control mthtieading, the library contains higher-
level methods and the JVM must also support multi-threadswally mapping Java threads to
native operating system threads.
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Automatic memory management

As opposed to C++ the memory management in Java is automatenikeans that the required
space on the heap for an object is allocated and releasedatitally. The allocation is handled
transparently by the JVM while the release is performed bgraage collector (GC). The GC
is able to independently determine which objects are nodoimguse and can release the space
they require.

1.2.3 Multi-threading in Java

As explained multi-threading was one of the design fourdatof Java. Therefore the required
mechanisms for thread-safety reach through every layédreadava platform from the language
over the bytecode to the JVM. Sitill, the usage is kept simpth wnly a few additional con-
structs. While each thread has its own distinct stack theghate the same heap which is the
main requirement for thread-safety.

The basic component is the object lock or monitor. Every digad every class provides such
a monitor that can be only acquired by one thread at a timeer@tineads trying to acquire the
same monitor will stall until the monitor has been releasgdhie thread holding it currently.
The monitor is actually implemented as a counter where aevaftD means that the lock is
free. Acquiring the monitor increases the count by one,asfgy it decrements it by one.
The monitor is never accessed directly but only throughstinehronized  keyword. When
encountering this keyword the Java compiler will autonalycgenerate the correct bytecode
sequence for acquiring a particular locynchronized can be used in two situations which
will be explained followed by an overview of the higher-lemeechanisms Java provides for
thread coordination.

Synchronized functions

Any Java method except for the constructor can be qualifi¢tl e keywordsynchronized

This means that only one thread may enter any synchronizéiabohef a particular object or
a static synchronized method of a class at a time. Since Jacéidns are reentrant, meaning
that they can call themselves, the thread owning the momtyr enter the method again thus
incrementing the count on the monitor. Once the method ibiefeturning or throwing an ex-
ception the counter is decremented again allowing otheatts to enter synchronized methods
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of this object or class.

Synchronized statements

In order to allow more fine-grained concurrency only certaiocks may be protected by a
monitor. An arbitrary object reference, not necessarily dime of the object containing the
block, may be used as a monitor. Again, only one thread magr anty synchronized block or
method of the object or class used as the lock at a time.

synchronized (someObject){
/« critical part, only one thread may enter this at a time x/

}

Listing 1.1: Example of a synchronized Java block

Volatile keyword

As a more lightweight replacement for synchronized stateside Java language also provides
thevolatle  keyword. When applied to an instance or class field the JVMresdhat every
access to this field is performed in memory instead of theatlisestack or registers. This allows
every thread to always see a consistent representatioe 6étt. Additionally for architectures
that do not support 64-bit types natively 64-bit operatioresy require separate operations on
the two 32-bit parts of the type. In this cas#atiie ~ ensures that this operation is performed
atomically without interference by other threads. Howgf@r more complex operations such
as incrementing a field usinglatle  on it does not guarantee consistency. Incrementing
actually requires two distinct accesses to the field, oneet@agd one to set its value, therefore
such operations are not protectedvoiatile

Thread coordination

A number of methods are provided by tBbject class that allow for the coordination of
threads. Since all classes are derived fhject these methods are available for every instance
of a class. Additionally the Thread class provides one irigsammethod.

1. wait(timeout) : release the object’s lock, enter the object’s waiting se$pend execu-
tion of the current thread, wait for the optional timeout xpiee
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2. notifyAll() . notify one or all threads from the object’s set that they ncaptinue
execution, do the same asit()

3. join() : Calling this method on an instance™fread makes the current thread wait for
the other thread to finish.

Exceptforjoin() these methods make sense only when called inside of syrizbcomlocks or
methods. Callingvait) makes the current thread release the monitor allowing otiethods

to enter synchronized statements of the referenced olgjgspend its execution and enter the
waiting set of the object. It is usually used when the thremahot perform its desired action
inside a synchronized block for example because of missatg. dotify()  or notifyAll()
performs the same actionsaait() while also notifying other threads in the waiting set that
they may resume execution. This may be used to signify ta dineads that there is now data
availablejoin()  provides a synchronization barrier ensuring that all pgurditing threads have
reached a certain point. When calling this method on an instafiThread the current thread
waits for the called thread to finish and then resumes exatuti

A typical example for this mechanism is tf&oducer-Consumer-Pattermhis programming
pattern consists of one shared buffer and two threads, batihich work on the same buffer.
The producer thread produces or stores values in the burftetree consumer thread consumes
or removes them. The buffer provides two synchronized nisthone that removes and returns
a value from the buffer and one that stores a value. When dthd#h threads try to enter
their respective method although only one may succesdollso because of the synchronized
methods, the other thread has to wait. The consumer therkglifethe buffer contains data
in which case it consumes it and caflgtify()  to signal the producer that the buffer is now
empty and new data is required. If the buffer is empty the gores can simply calivait() as
there is nothing to do. The producer in contrast checks ibtifeer is empty. If it is it produces
new data and callsotify()  to indicate to the consumer that it may fetch data. If thedyu§
not empty the consumer callgit() as there is nothing for it to do.

Summary

Using the available variations of tisgnchronized  keyword thread-safety in Java, that is mak-
ing sure objects and their data are always in a consistetiet @ be ensured. In its simplest
form it is usually achieved by making fields of the object ptésso that they may not be di-
rectly accessed from outside the object. Synchronized@uoi#thods to get or set these fields
are provided. These methods may check the validity of thevadwe or other conditions. Once
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the method is done and the lock released the object is stdl defined state since no other
threads were able to interfere with this operation. If thielfieof an object can be directly ac-
cessed by multiple threads inconsistencies may occur. ddmges from the well-known fact

that most operations such as incrementing a value are noi@tdncrementing for example

requires fetching the current value first, incrementinghd ghen writing it back. If the sched-

uler switches to another thread after the first thread hadgtehed the value the result will be
incorrect.

To summarize this means that Java may provide the right toalshieve thread-safety however
the responsibility to actually ensure this clearly lieshvitie Java programmer. This pointis very
important to the concepts for shared heap access descnilteteii chapters.

1.2.4 Performance

While these goals have helped Java to increase its outreacapgeal they came at the price
of a low performance due to the virtual machine interpretireggbytecode at runtime. However
in recent years the addition of Just-in-Time (JIT) compgileas greatly decreased this problem
and pushed Java closer to a performance level competitiveGvand C++. JIT compilers are
called at runtime and dynamically translate the Java bygledo native machine code. Using
this approach allows maintaining the machine-indepenrel@iche compiled Java program.
Additionally the JIT compiler is able to take into accountalaollected at runtime such as
the flow of the program and external events and then reorgdhe structure of the code for
example with method inlining and branch predictions. They/w is theoretically possible to
achieve a higher performance with a JIT compiler than withditional ahead-of-time compiler
as has been shown in [BDB99].

Around the year 2000 there was a huge interest surroundiagfda high-performance com-
puting, organizations such as Java Granstdl document this. However in recent years this
trend has slowed down and corporate use of Java extendethenttomain of server systems
and large clusters.

%http://www.javagrande.org
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1.2.5 The Java platform

For the first years the Java programing language and the f@m, which comprises among
others the JIT compiler, bytecode interpreter, garbagedok and class libraries, were per-
ceived as one unit. Due to the intermediate language in the & bytecode however it is
possible to use any language to program for the Java platisriong as it can be compiled to
bytecode. In the last years many languages other than Jagablkan developed for the Java
platform. Most of these are dynamically typed and thus allomnfaster development cycles
than the statically typed Java. As a result of this Java hasexpanded from providing one
language for many platforms to many languages for manyqlat.

Due to this paradigm shift the distinction between the Javeyliage and the Java platform
is emphasized lately. Furthermore different packages areiged for regular users and for
Java developers. For regular users Java is usually delivaréhe form of a Java Runtime

Environment (JRE) consisting of a JVM and the compiled cldssiies which is enough to

run Java programs. If other development tools such as a temapid documentation generator
as well as the source code to the class libraries are addeoutidde is referred to as Java
Development Kit (JDK).

1.3 Java on Cell Motivation

If it is possible to enable Java programs to employ Cell/B.Etteir calculations a whole new
world would open up for both Java and the Cell/B.E. Java progreould gain a performance
boost from using the Cell/B.E.s SPUs while the CBEA could prafini the vast number of
Java programmers and applications already existing toddyesmch an even wider audience.

While Java and the CBEA share a number of attributes it curréntipt possible to have Java
programs benefit from the raw computational power the Cell/Briavides. Some of these
attributes and other positive factors are discussed here.

1.3.1 Multi-threading

Multi-threading is an integral part of Java and firmly embedichto its core. Its usage spans
from desktop applications using different threads to uptiae user interface and act on external
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input to server programs using multiple threads to serveipheirequests. Similarly it is crucial
for Cell/B.E. programs to subdivide tasks so they can be egdduatparallel on the SPUs.

1.3.2 High-performance computing

In recent years Java has become an increasingly importea ifothe High-performance com-
puter (HPC) sector thanks to huge improvements in JIT comgpdad in its memory man-
agement. By now it is able to compete with C programs perfooeamse while providing

a much higher level of abstraction for the programmer. The CBiaé been designed from
the ground up to provide extreme performance. It has alrbaéy used in a number of HPC
projects, most notably the ongoiftpadrunneproject® designed to become the world’s fastest
computer with a performance of one petaflop in 2008.

1.3.3 Provide a homogeneous environment

As the JVM acts as an intermediate layer hiding any architatdifferences this fact may
also be used to hide the heterogeneous nature of the CBEA f@datta programmer. MFC
transfers and shared access to data across different nesnocan be performed implicitly and
controlling the SPU threads may use the standard mechamiganable in Java. When using
one of the currently supported languages for Cell/B.E. suc@/@s+, Ada and Fortran the
programmer has to take care of all this manually.

LOnttp://www-03.ibm.com/press/us/en/pressrelease/202ks
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In this section a number of concepts to enable Java on CellBlIEhe presented and evaluated
along with the software components they require to be fetfillBased on this evaluation the
most promising concept will be further pursued and its baseponents will be introduced in
greater detalil.

2.1 Concept

Due to the uniqueness of the CBEA three different approachesdble Java seem viable. De-
pending on the approach chosen the architecture can be sesthar a distributed memory
or shared memory one. The goal is to extend the JVM in a wayhilles the underlying ar-
chitecture and thus create what is essentially a distibat&ared memory system (DSM) in
which the entire memory space is accessible transparemtlgiifnodes. Such a JVM is com-
monly referred to as aingle system imagas it looks to the user like a single system. Further
information about DSM systems and their implementatioravals given by [Fen01].

If the SPEs are seen as independent nodes with the LS as ¢astated memory and a dedi-
cated processing unit then the whole architecture can laeded as a distributed memory one.
Communication between the nodes is performed by messagagasswever with a low la-
tency and a high bandwidth compared to other distributed ongrrchitectures. This is due to
the fact that the nodes are not connected by a network beidseside on the same chip. The
message passing in this case would be implemented with oxailiessages and DMA trans-
fers. In the other case the SPU is seen as an auxiliary piogaasit with the LS as its cache
and the main memory being the central storage area. Witimbdsgel the CBEA is more closely
related to a shared memory multi-core architecture whergratessing units can access the
entire memory space.
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2.1.1 JVM running inside SPU

A more or less complete JVM is ported to run on the SPU as showvigure 2.1. This requires
the JVM to fit entirely into the 256 KiB memory available to tPU while still leaving enough
space for both the actual Java program and its runtime detatack and the heap. Additionally
the class library has to be made available to the SPU. Dus 8dzi€, which is around 16 MiB
for GNU Classpath, a free class library, this requires a qonweswap the needed code in and
out of the LS as required. While the available memory doese@tsmuch certain JVMs have
been designed to work on embedded devices with similar mgoworstraints.

This approach makes it possible to run both interpreted &irdampiled code or a mixture
thereof on the SPU. However it seems doubtful that a Javepreter on the SPU is able to
achieve any significant performance as it has to do a lot oémesipe branches and memory
lookups. A JIT compiler promises much higher performancgdver requires additional space
for the compiled code. Once a method has been compiled acdtexton the SPU its machine
code can be swapped out to the main memory so only the cyrregglded functions have to be
kept in the LS. This also erases the time needed to compiledifun on subsequent calls as it
is still available from the code cache in the main memory.

As the SPUs act as mostly independent nodes in this model sagepassing scheme or a
technology such as remote method invocation (RMI), the Jawvedard for distributed Java sys-
tems, is required to allow them to cooperate. Other probleittsis domain such as distributed
garbage collection due to each SPUs’ local heap also apply.

2.1.2 Compile Java code to native SPU code

A second concept is based on the idea of using a compiler veaicltompile Java source code
into native machine code for the SPU ahead-of-time like @iticmal compiler. This approach
promises a high performance due to the use of native codeutithe penalty of compilation
during runtime. It could also be extended to work in a sinfdehion as the currently supported
languages for the Cell/B.E. For these, compilers are prowdech can generate native code for
both the SPU and the PPU with additional runtime librariestéot the compiled SPU program
from the PPU. The basic concept is depicted in figure 2.2. A gampiler would also face
the same problems as the existing compilers which includerspnization between SPUs and
PPU and code size often being larger than the available 15 $tais is especially problematic
for Java since dynamic libraries are not available on the 8fRid requiring to link the class
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SPU O SPU 1 SPU n
ap in / out access shared objects

main memary

assembly cache

local cache

Figure 2.1: Run an entire JVM on the SPU

libraries statically into the SPU program.

2.1.3 Use a JIT compiler to offloads functions to the SPU

In the third concept a host JVM will be run on the PPU which affle computationally intensive
methods to the SPU. The PPU executes common functions avidesénie SPUS’ request to
central JVM infrastructure components such as the cladsto&Employing the SPUs is done
by having the JVM’s JIT compiler generate native machineectmt the SPU which can be
executed right away without additional performance pésmltThe JVM can act as a central
synchronization point to exploit the multi-threading chitiies of Cell/B.E. As an additional
benefit the main memory can be used as a cache to store corfymlgttbns and provide them
to the SPUs as needed. A mechanism to swap compiled code iouard the SPUs LS has
to be developed. Furthermore objects on the heap have to helyushared and accessed
by all SPU and PPU threads. Thus the common problem of syniz@a access to objects and
functions also has to be taken care of with the addition thpgtats might have to be temporarily
moved to an SPU’s LS to work on them. A rough overview of thistegn is shown in figure
2.3.
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PPU
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Figure 2.2: Compile Java code to native SPU code

2.2 Feasibility study

Each of these three approaches comes with its own advardagetisadvantages which deter-
mine its feasibility and will be discussed here.

1. As discussed before the first approach will be best fulfibg a JVM which has been
designed for use in embedded systems. Due to the simitanitithe SPU and the PPU
instruction set it is desirable to choose a JVM which alrepyides an interpreter or
JIT compiler for PowerPC. One example of this]'ﬂmVI\/@ which comes with a binary
size of around 160 KiB and includes a PowerPC interpretewdyer due to their nature
interpreters commonly achieve only performance levelgastl an order of magnitude
lower than those of JIT compilers as shown by the performanogarisons on [Shu04].
Therefore this approach does not look very promising. Aeoftee JVM which provides
a PowerPC JIT compiler i@acag. It can be stripped down to a binary size of around 600
KiBs which is still too large for the SPU’s LS. Additionally ¢ithread synchronization
overhead in this concept is larger. Either way this concagt tnany problems as ex-
plained above. As even the basic idea does not sound pranistarms of performance
this concept will not be further pursued.

2. The second concept is based @@E, part of the Gnu compiler collection, which can

Lhttp://jamvm.sourceforge.net/
2http://www.cacaojvm.org
3http://gce.gnu.orgljaval
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Figure 2.3: Use a JIT compiler to offload functions to the SPU

compile Java code into native machine code for many plagor#s both a frontend

for Java as well as a backend for the SPU, the respective GGG fer the component
supporting a certain language and the one supporting aptatilready exist these two
have to be coupled together. With this it will be possibledmeile a Java program into
native SPU machine code before runtime and execute it onRkke Bhis however means
that the program is only executed on a single SPU, allowinfjiphet SPUs and the PPU
to cooperate requires additional work. In principle a GCllierSPU should profit from

the large number of optimizations built into GCC and thereforGCJ. However GCJ’s
performance is still sub-par [Shu04]. Additionally GCJ oglynforms to the Java 1.1
standard.

. As with the first approach a JVM with support for PowerPCvmtes a good starting

point. The only free JVMs with PowerPC JIT compilers stilirzgactively developed

are Cacao an&affe, however the Kaffe JIT compiler for PowerPC is broken as & th
writing. Cacao on the other hand has been developed from thadrup to support JIT

compilers for RISC processors and thus promises a high peaface. Since no other
compilation technology so far could rival JIT compilers the Java platform this match
seems to be suitable. Additionally the possibilities of ddmpilers such as dynamic
optimizations provide interesting opportunities. Thesald for example be applied to
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determine how to partition workloads between the diffekeell/B.E. cores or anticipate
data transfers based on previous and repeated occurrences.

Due to the reasons discussed the third approach promisesasiepotential. It will therefore
be further pursued in this thesis.

2.3 Components

Summarizing from the feasibility study two main componemitsmake up Java on Cell. These
components will be briefly introduced in this section whie thosen JVM will be described
in greater detail in chapter 3.1.

2.3.1 Cacao

From the Cacao manual [Kea04]:

CACAQO is a research Java virtual machine. From the beginnimgd designed
for 64 bit architectures and was based on a just-in-time dempTo avoid two
different stack frame formats no interpreter is includedche Tompiler is so fast
that it does not matter to compile code which is just execatece. One of the
aims of CACAO is to keep the system small and simple which make€ATA
also well suited for embedded systems. It has been used torexpew just-in-
time compilation techniques, fast program analyses andawngments for run time
systems. Many of our developments turned out to be usefuhaddeen included
in the version of CACAO which we now distribute under the GNU grah public
license.

The Cacao project was originally started in 1996 and is silhd actively developed by a small
community following its release under the GPL in 2004. By nbfeatures an interpreter and
has been extended to support a number of different RISC and 82S@nd 64-Bit platforms
including Alpha, x86 and x8®&4, ARM, PowerPC and MIPS with varying degrees of support
for the interpreter and the JIT compiler. The JIT compiles paoven to create efficient code
however still has room for improvements for certain workleas the performance comparison
on [GarQ7] shows. Cacao uses GNU Classpath for its classiéisrar
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2.3.2 GNU Classpath

GNU Classpath was originally created as a response to theldapavhich describes the fact
that Sun provides its class libraries at no cost includingeas to the source code while forc-
ing a non-free license on developers. It was started in 18®&awith its own JVM which
was dropped as the project matured. Development was theeddmn providing a stable base
of class libraries for other JVMs to use. This move was highlgcessful and Classpath was
adopted by many free JVMs. With the release of the Sun JDKideY the class libraries and
the HotSpotJVM under the free GPL v2 license starting in November 2006 future develop-
ment of Classpath is unclear as Sun’s JDK provides a more &eiphplementation. Classpath
will most likely be used to fill in the gaps left in Sun’s JDK byet remaining proprietary parts.
One Open Source project to attempt this is IcedTea. As Cldsgpavides a prerequisite for
Cacao it requires no further work and thus will not appear sssguent chapters.
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Due to the reasons described in section 2.2 the followingkwah be based on the Cacao
JVM and GNU Classpath. This section will give an overview & tbacao architecture and
the resulting necessary steps to port Cacao to the Cell/B.HI hegin with a rough overview
of the steps the JIT compiler performs and will describe théecgenerator that outputs the
assembler instructions in greater detail. Afterwards ti@aad its integration in Cacao will
be explained followed by some mechanisms used in Cacao fprésnlving and the different
schemes for calling a method. Finally some interestingtgomthe file hierarchy of the Cacao
source code will be pointed out.

3.1 Cacao architecture

The Cacao handbook gives a first rough overview of the Cacaotectire and especially

the JIT compiler whose port to Cell/B.E. will take the most malnwork. It describes the

way classes and its members, fields, methods and nesteds;lass loaded by the JVM when
requested by the Java program, how the required data stescive organized during runtime,
how methods are invoked and how exceptions are handled.eit goes on to describe the
architecture of the JIT compiler which will be summarizedehd-urther architectural parts will
be introduced as required.

3.1.1 Compiler steps

The Cacao handbook also describes the challenges of pdrerld T compiler to different plat-
forms, among them PowerPC in 32-Bit mode. Due to the fact thea@waas originally started
with 64-Bit RISC processors in mind and had already been ptotéae 32-Bit x86 architecture
most of the upcoming problems had already been solved. Teoifspparts required further
work, 64-bit arithmetic and the calling conventions forimatfunctions. 64-bit arithmetic is
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Figure 3.1: Control flow of the JIT compiler

performed by doing more or less the same operation on two B2Bisters. Calling native
functions required integrating the respective platforapgplication binary interface (ABI). The
ABI for a platform which is the sum of an architecture and anrapeg system defines how
the available registers are to be used so as to ensure iatalolity between code compiled by
different vendors and technologies such as a JIT compiletterpreter. This includes defining
the link register, the stack pointer register, registergaioing arguments and return value, the
callee and caller saved and the temporary registers as svigleasetup of the stack frame.

The final goal of the compiler is to translate the stack-balse@ bytecode into register-based
native machine code for the target machine. In order to awoitecessary register or memory
copy instructions the compilation is done in three stagesspends a considerable amount of
time analyzing the bytecode. These three steps will be ithestim the following.
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3.1 Cacao architecture

Basic block determination and internal representation

The smallest unit apart from individual bytecode instroies that the compiler works with is
the basic blockwhich always consists of one or more bytecode instructibusing basic block
determination the compiler iterates over the respectivbiates bytecode and evaluates for each
instruction if it marks the end of the current basic block. iBé&sock ends are most instructions
that represent a conditional branch suclf-alse , switch , throwing an exception or simply
returning from a method. The instruction that marks the dredoasic block will not be included
in the current block but will be the first instruction in thexhblock. Method invocation however
does not necessarily end a basic block which in principlewalfor method inlining, that is
including the instructions for a submethod in the callingdtion’s code. This allows saving the
overhead of a method call such as setting up the stack frahig basic block determination is
performed to make the calculations of branch targets fodifecompiler easier as each basic
block marks a potential branch target. Additionally theommfiation about blocks can be used
for optimizations for example determining unused code comegpilation for frequently used
blocks.

basic block end

basic block end

else

Figure 3.2: Basic block layout example

In order to simplify the transition from one basic block too#rer the stack is mapped to the
registers with a fixed interface so the following basic blaak always expect a certain stack
slot at a certain register. This approach was chosen by thacCdevelopers after empirical

research on their part have shown that that the stack deptibhasic block boundary is rarely

greater than six. As most architectures provide more tharegisters the stack can be entirely
mapped to registers.

At this stage the bytecode instructions are also transtatad internal representation consisting
of one operator, two operands and a pointer to a stack steucfertain bytecode instructions
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such as those folding the operand into the opcodeGENST x which pushes a constant value
on the stack have to be split up into the generic operator laddetspective operand to fit the
fixed representation. This approach allows for faster ei@cwf the subsequent stages.

Stack determination and instruction combining

The next stage analyzes the used values and tracks wherarth&aded and where they are
consumed in order to avoid unnecessary copies and loadshiBguurpose the stack is repre-
sented as a linked list allowing the compiler to look up if amdere in the stack an operand
resides. Based on this information the register requiresnehthe basic block can be calcu-
lated.

In this stage some sequences of instructions are combit@éiernal instructions that can be
executed more efficiently by the hardware. One example dingaa constant that is a power
of two and then using it for multiplication or division. Th&quence is combined into one
instruction which can be efficiently handled at the machimdeclevel with byte-shifting.

Register allocation

The register allocator determines for each instructionctvinegisters its machine code trans-
lation may use for input and output. Due to the fact that Cacas @riginally designed for
register-rich RISC architectures such as Alpha and MIPS alsirfirst-come-first-serve ap-
proach is used for the register allocation of the machingunsons. This means that registers
will be reserved as long as the value they contain is requftedt which they can be allocated
again. If too many values have to be kept available old valneg be swapped out to the
stack.

3.1.2 Code generator

The actual code generator for the JIT compiler consists ofrtvajor parts, macros to output
the machine code translation of the bytecode of a methodwamxtibns and data structures to
manage the data segment. The two components will be dedénleis section.
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The code generator macros

The code generator macros are defined in the architectesfisdile codegen.h . They mostly
consist of a mapping of assembler commands and very few highel functions to macros
which in turn call functions or macros that output the corfgoary sequence to encode the
requested instruction. As the PowerPC instruction set bagya few different syntax forms for
its instructions the binary output macros as shown in 3.¥igeoa concise view of the binary
instruction stream. The formats vary in the number of opgsarhich can be registers or
immediate numbers. These binary output macros are usedthbgfumacros which are mapped
to the instruction set of the respective architecture. Aglarof these macros is shownlin 3.2.
These macros will eventually be used by the JIT compiler dsgtdes for each bytecode how
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to translate it to native machine code.

/* macros to create Code ******************************************************/

#define M_OP3(opcode ,y,o0e,rc,d,a,b)
do { \
*((u4 ) cd—>mcodeptr) = (((opcodek< 26) | ((d) << 21) | ((a) << 16) | ((b) << 11)«
| ((oe) << 10) | ((y) << 1) | (re)); \

cd—>mcodeptr += 4;\
}+ while (0)
#define M_OP3GET.-A(x) (((x) > 16) & Ox1f )
#define M_OP3GET.B(x) (((x) > 11) & Ox1f )

#define M_OP4(x,y,rc,d,a,b,c)\
do { \
*((ud4 *) cd—>mcodeptr) = (((x)<< 26) | ((d) << 21) | ((a) << 16) | ((b) << 11) | ((«
c) << 6) | ((y) << 1) | (re)); \

cd->mcodeptr += 4;\
} while (0)
#define M_OP2IMM(x,d,a,i) \
do { \
*((u4 +) cd—>mcodeptr) = (((x)<< 26) | ((d) << 21) | ((a) << 16) | ((i) & Oxffff)); «
\
cd—>mcodeptr += 4;\
}+ while (0)
#define M_INSTR.OP2IMM _D(x) (((x) >> 21) & 0x1f )
#define M_INSTR.OP2IMM _A (x) (((x) >> 16) & Ox1f )
#define M_INSTR.OP2IMM _I(x) ( (x) & Oxffff)
Listing 3.1: PowerPC binary output macros for the JIT compil
#define M_IADD(a,b,c) M.OP3(31, 266, 0, 0, c, a, b)
#define M_JADD_IMM(a,b,c) M.OP2IMM(14, c, a, b)
#define MADDC(a,b,c) MOP3(31, 10, 0, O, c, a, b)
#define M_ADDIC(a,b,c) MOP2IMM (12, ¢, a, b)
#define M_ADDICTST(a,b,c) MOP2IMM(13, ¢, a, b)
#define MADDE(a,b,c) MOP3(31, 138, 0, 0, c, a, b)
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#define M_ADDZE(a,b) MOP3(31, 202, 0, 0, b, a, 0)
#define M.AADDME(a,b) M.OP3(31, 234, 0, 0, b, a, 0)
#define M_ISUB(a,b,c) MOP3(31, 40, 0, 0, c, b, a)
#define M_ISUBTST(a,b,c) MOP3(31, 40, 0, 1, c, b, a)
#define M_SUBC(a,b,c) MOP3(31, 8, 0, 0, c, b, a)
#define M_SUBIC(a,b,c) MOP2IMM(8, c, b, a)

#define M_SUBE(a,b,c) MOP3(31, 136, 0, 0, c, b, a)
#define M_SUBZE(a,b) MOP3(31, 200, 0, 0, b, a, 0)
#define M.SUBME(a,b) MOP3(31, 232, 0, 0, b, a, 0)

Listing 3.2: PowerPC assembler instruction macros for thedmpiler

The data segment

The data segment is handled as a linked list by the JIT conthiléng compilation. Itis used to
store values at JIT-compile time which may have to be retdeduring runtime of the method
such as locks, pointers to data structures as well as metitbfledd references. Additionally
placeholders in the data segment may be created that arersetime. Each entry in the list
specifies a type such as integer, double, address, and aavaldimks to the next entry. The list
can be modified with a number of functions that add a value eftam size or find the location
of a previously added value. That way existing entries mageheed.

A number of data segment entries such as those designaérsget of the exception table and
a pointer to an informational structure have to exist forhemethod. They are the first entries
to be added to the data segment and thus have a fixed offsamplifg access to these entries
their offset is also given in precompiler definitions.

When adding an entry to the list an offset is returned. Thisatfpoints to the location of the
entry relative to the code entrypoint during runtime whitdoanarks the beginning of the data
segment in the opposite direction of the code. The locatfaihe code entrypoint is always
kept in a register called therocedure vectgso each value can be accessed by loading the data
stored at the sum of the procedure vector and the offset.

Once compilation of the method’s code has been finished Theaihpiler iterates over the data
segment list and writes out the values in the list accordintheir storage size to the actual
memory location of the data segment. It starts with the fieshent in the list which is stored
right below the procedure vector and moves on towards loderesses.
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low address

dseg entry 1

dseg entry O

procedure vectol

method code

high address

Figure 3.3: Schematic view of the data segment

3.1.3 Garbage collector

Like many other free implementations of object-orientedgpamming languages Cacao uses
the Boehm-Demers-Weiser garbage colle@@wehm GC). As this GC has originally been de-
veloped as a replacement for the C/C++ memory managemenidnsdt may also be used for
automatic memory management for other programming laregiagnen the actual implemen-
tation is done in C/C++. The Boehm GC implement®ark-and-sweeplgorithm. This type

of GC performs its work in two stages:

1. Starting from theoots in Cacao’s case the method stack which may partially reside i
registers, follow the chain of pointers and mark every ddjethis chain aslive

2. Free all memory belonging to objects not markedlas

For the purpose of following the pointer chain the Boehm GCsaters every bit pattern that
may represent a pointer as such. This is calledservative GGs opposed to aexact GC
that can differentiate between arbitrary bit patterns astdad pointers. The Boehm GC uses a
stop-the-worldmechanism during garbage collection which means that wieGC is started
all threads are stopped. While this avoids any concurrescesit marks a certain performance
barrier since no actual code can be executed in the progreng the GC while it is running.

At the time of this writing the Cacao team is also working onirtlegn implementation of an
exact GC, however it was not ready for productive use.
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3.1.4 Lazy resolving and compilation

Since Cacao is using a JIT compiler not all references to thabees of a class are resolved at
compile time of a method but during runtime. This is calledyleesolving since the resolving
only takes place once the member is actually accessed. Theamem for lazy resolving
in Cacao is based on a so-called patcher. Whenever an unrésokmber is encountered
during compilation a temporary data structure containinty ahe essential information for
resolving that member is created. The instruction tryinga¢oess the member is replaced
with a stub method. Once this instruction is reached dunimgime the inserted stub method
is called. The stub method then calls the patcher with tha dlticture and other required
information for resolving the member. Depending on the tgpenember, such as a static
or virtual method or field, a more specialized patcher suttfon is called and the affected
references in the method’s code and data segment are aflji&stecution then continues with
the resolved member and the original instruction at thetpehrere it previously branched to
the patcher stub.

reference to

unresolved member \

branch to stub code

data segment

original instruction | __

code segment

4. move backfin patcher stub

5. adjust
references

2. provide info

3. resolve member

available classes

Figure 3.4: Patcher mechanism

Closely related to lazy resolving is also the way the JIT cdenps called. Only when a class
Is first required during runtime it will be initialized by tHazy resolving mechanism and each
method it provides is filled with a stub compiler method. Thkigb method is only a few
instructions long and all it does is call a glue function whiie turn calls the JIT compiler. The
stub method also contains a small data segment which pwadly two entries, the branch
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target for the glue function and a reference to a structuiielwrovides all required information
for compiling the method. Once the method is called for thet fime the stub method is actually
executed. After successful compilation the JIT compilgusis the references to the method
so that subsequent calls will branch to the newly compileteand finally it calls this code as
well.

3.1.5 Method calling

Several different ways for calling a method in Java are atbsgleach of which requires a certain
calling scheme as well as appropriate handling by the patche

Static methods

Static methods are those methods that are shared amongiestyce of a class and do not
belong to a particular object. This means that the code eaayalbe found in a fixed location
once it has been compiled. The implementation for thismglicheme in Cacao consists of
adding a reference to the entrypoint to the data segmentinigdhe reference and branching
to it. The patcher therefore only has to adjust the data segemry once the method has been
compiled.

Instance methods

Instance methods are object members so they are alwaydaiegowith a currently existing
object. In order to resolve the address of an instance mistisode each object in Cacao is
associated with &irtual function table(vftbl) which contains pointers to all instance methods
of an object. Using the address of the object header and tfex iwithin the vftbl the code
address can be resolved. This requires two memory accessmesderencing the address of
the vftbl from the object header and then dereferencing ttieygoint from the vftbl. For
unresolved methods the index in the vftbl is not known soligigg set correctly by the patcher
once required.
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Interface methods

A Java class may implement any number of interfaces. Anfaterdefines which methods
a class has to implement however does not provide an implti@m of its own. Similar to
instance methods each object header in Cacao also providegedace table which contains
all interfaces the object’s class implements. In order $oikee the code address two offsets are
required. The first one is the index in the interface table sécond offset provides the index in
the function table of that interface. Resolving the codetiocaand patching interface methods
is similar to instance methods only with two instead of orfeef

Builtin methods

A number of methods are implemented in C in the Cacao source axd are therefore called
builtin methods. They are mainly used for two cases:

1. Interactions between Java methods and the JVM such asfiaing new objects along
with the required memory management

2. Implementing translations for bytecode instructioret flequire a complex and long se-
guence of assembler instructions

The addresses to these methods are known at JIT-compilestritge appropriate branch in-
structions do not have to be resolved at runtime and can leatlyrgenerated right away. No
patching is required. Depending on the architecture sortegaonventions from the ABI
have to observed, for PowerPC however the ABI used by Javaoaetnd builtin methods is
the same thus requiring no additional work.

3.1.6 File hierarchy

A short overview of the file hierarchy used by the Cacao soumesals mainly two interesting
points. The JIT compiler source directory contains an iildial directory for each architecture
it supports which in turn contains another set of directofoe each operating system supported
on that architecture. While the architecture directories@o the machine-dependent parts of
components such as the code generator and the registeatalidhe OS-specific directories
contain for example definitions from the ABI which may diffeom OS to OS even on the
same architecture.
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3.2 Design decisions and steps for the port

As a conclusion from the overview of the Cacao architectueepitrt of Cacao to Cell/B.E.
will be based on the following design decisions and step imdividual steps will be briefly
discussed along with potential issues that will have to liFessed.

3.2.1 Porting the JIT compiler to emit SPU code

In order to execute any methods at all on the SPU the code @enéor the JIT compiler will
have to be ported to support the SPU instruction set. The FRWéaIT compiler can be taken
as a base since the instruction sets share a certain styilEney are both RISC-based and use
only a small number of different formats for the assemblstrirctions. Special care will have
to be taken with the 16-Byte aligned memory accesses of thes3E As well as efficiency of
the code which should be low on branches and make use of this 8Ridue instructions.

3.2.2 Shared heap access

Due to the multi-threaded nature of both Java and the Cell/B.8olution will have to be
developed for shared access of objects on the heap from dllape SPU threads. This may
include the SPU accessing objects in the main memory, maingga local heap in the LS and
creating objects there as well as transferring entire ¢bjeetween the different memories and
caching them for faster access. However, as Cacao impleitientsulti-threading capabilities
of Java some of these problems such as concurrent threadsadss to objects have already
been solved when the Cell/B.E. is regarded as a shared-meysbteyrs Still, in order to achieve
the desired functionality many changes to the Cacao archrewill be required as support for
multiple heaps has never been regarded in Cacao before.

Along with shared heap access also comes the problem ofdemtethe GC. Depending on
the approach for shared heap access objects or objectrreésrenay reside on both the PPU
and on the SPE including its registers and LS. Since the SP8’'san be mapped into the
PPU’s address space a GC running on the PPU can also accedeamd heap on the SPU at a
slightly decreased performance. It can also include olpjeiciters on the SPU in its calculations
of whether an object is still alive.
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3.2.3 Swap code in and out of the LS

As the LS is very limited in size it will most likely be requiteo keep only those compiled
methods in it that are needed currently or soon. The compibeleé of the other methods will
be cached in and made available from the main memory. A mdthediap code in and out of
the LS as required will have to be developed. A starting pomild be provided by the SPU
Software Managed Cache Library [IBMO7b] that is included ia @ell SDK 3.0. This library
allows the SPU to use parts of the LS as a cache for the main mesotdhat the developer does
not have to manually take care of the synchronization antstea of the data. Additionally a
method’s code may be too large for the entire available speit® LS requiring to split up the
code into multiple segments or not being able to executentkitiod on the SPU.

3.2.4 Selective execution on the SPU

Due to the SPU'’s highly-specialized capabilities only thasethods that can make use of its
functionality should be executed on it while most other rdtghshould be run on the PPU.
In fact this applies for most of the methods from the clasehyy especially parts such as
the classloader and 1/O functionality. That way the PPU woubstly service requests from
the SPUs that they cannot complete themselves. In ordethiewacthis separation it will be
required to mark methods for execution on the SPU. This cbeldone for example by giving
the method or class a special name or package or tag it withrzotation.

3.2.5 Communication and branching between SPUs and PPU

As only certain methods will be executed on the SPU it will eeessary to develop a concept
which allows branching from an SPU to a PPU method and vicgsaverhis requires passing
arguments between the methods which in turn means movimg leéween main memory and
LS. Additional facilities to support the multi-threadinggabilities of Java including thread
coordination and shared synchronized object access hawe poovided. Since most of these
functions are realized by using mutexes in main memory tlaeybe handled by atomic DMA
transfers.
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In order to fulfill the design decisions a number of differeagks have to be performed for each
step. A more thorough discussion of these steps along wekilple issues and a number of
feasible solutions will be given in this chapter. Not alligains presented have actually been
realized in the prototype implementation. An overview & tinplemented parts will be given
in the chapter 5 along with a review of what the prototype [satde of.

4.1 Build process and additional files

Besides changes to existing files or using existing files as@ &daumber of new files had to be
added in order to access the SPUs. Additionally the buildgse had to be altered to include
the newly added files.

4.1.1 Cell port

As a starting point in order to maintain the sources in a stetecan be compiled the PowerPC
port of the JIT compiler was simply duplicated and moved taraatiory calledcell/ . Any
references to files from thgowerpc/ directory had to be adjusted to pointdell/  instead.
Furthermore a number of files in this port which will be exptd in greater detail in section
4.2 were also duplicated to provide one copy for the PPU aedarthe SPU.

4.1.2 C-code entrypoint for the SPU

In order to facilitate use of the SPUs a central entrypointtiem is developed in C from which
the first Java method on the SPU will be called. While the SPUWsdcbe loaded with the
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first Java method they have to execute and then be set to nisniptermediate step greatly
eases development. The necessary steps for setting upaatidgsthe SPU can be handled
by libspe2, all required C functions including builtin fuirons are automatically loaded to the
correct address in the LS and debugging statements suclinéagout values can be easily
inserted.

The exact flow for starting up the SPU as shown in figure 4.1nsegith the PPU transfer-
ring the SPU binary to the SPU and then starting up the SPWs Biniary includes all nec-
essary C and assembler functions. This is performed by faléihg spe _program _load()

with the pointer to the SPU binary that is linked in with theWPBinary and then calling
spe _context _run() which starts the SPUspe _context _run() accepts a number of argu-
ments which are passed on to thein() function of the SPU binary. Thmain() function
initializes the software cache for storing code and thenisiar a number of mailbox messages
from the PPU. The PPU currently sends these messages osceatly to execute thmain()
Java method so that this method is executed on the SPU. Tividiumal messages contain the
starting address of the data segment in main memory, theioenhisize of the data segment
and the code and the offset to the beginning of the code. Grec&RU has received all three
parameters it retrieves the code and starts to execute ¥hendethod. More details on this
process will be given in later sections.

Linked in with the C part is also an assembler part. It cutyesdntains only a small number of
functions used to branch between Java methods, explaimadna detail in section 4.6.2.

4.1.3 Build process

Cacao is using th&NU Autotoolsfor its build process. This set of tools from the GNU project
allows the automatic creation of Makefiles for large pragdmt defining only a relatively small
number of build options and dependencies. Additionallyupgorts a portable build mech-
anism across multiple platforms. This includes automaticfiguration of the build process
which checks for the available tools and libraries as wellsiag the correct platform-specific
mechanism for dynamic linking.

Unfortunately the Autotools currently do not support thelfBekE. toolchain which in fact uses
two separate toolchains, one for the PPU and one for the SR& cdmpiler to be used can
be passed to the configuration script however this compilkétoe used for all files. For that

reason the commands to build, link and embed the SPU speaifis @s described in section
were hardcoded in the specific Makefiles.
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PPU

Startup of the JVM
Calling Java main

Notify SPU

Initialization of SPU

SPU

Get code, execute Initialize cache, wait

Figure 4.1: Startup of the SPU

Build script

In order to support building Java on Cell/B.E. on other systemwhich the modified sources
are not available a build script is provided. This build gtis packaged with a number of
patches and the unmodified Cacao sources. When it is run it atitaity unpacks the Cacao
sources, copies the PowerPC port to the new Cell/B.E. portieshe patches which contain
all modifications performed for this project and starts theatic configuration for the build
process. The user may then build and run Java on Cell/B.E.

4.2 Porting the JIT compiler to emit SPU code

The majority of work with porting the JIT compiler was spligtveen two of its components,
the register allocator and the code generator as these tiggra the most machine-dependent
ones. One of the biggest and most pervasive issues witmgdtte JIT compiler comes from
the fact that it is expected to compile code for only one tyjggrocessor and thus expects to use
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the same register set and instruction set for all methodsedas this reasonable assumption
precompiler definitions are used in Cacao to conform to the ABlather fixed items including
the number and size of registers available, dedicatedtezgilke the stack pointer, pointer size
and stack slot size. As these definitions are handled at derpie this still allows for the
flexibility to build the JVM to generate code for differentcaitectures however once it has
been compiled it supports only one type of architecture c&extending Cacao with support
for Cell/B.E. required the ability to JIT-compile for two diffent types of processors a new
approach for this problem was needed.

Three possible solutions to this issue seemed realistichamd also been discussed with the
Cacao development team:

1. Duplicate the precompiler definitions and machine-ddpatfunctions for both the PPU
and the SPU, call the correct function for the target prametsge of the currently com-
piling Java method

2. Replace the precompiler definitions with a conditionalesteent that returns the correct
value depending on the target processor type

3. Define a structure containing the machine dependent gaeasnand pass the correct
instance to the compiler stages thus adding an intermetdiatet-specific layer

Item two could quickly be ruled out since precompiler defams should define exactly one
value. Item three seemed most promising since it provideatdtexibility with little redun-
dancy however would require a major code rework. This is #isosolution chosen by other
projects such as GDB that have also encountered the prodlgmecompiler definitions for
architecture-dependent parameters. Due to time contstrii@ first solution was chosen since
it requires the least effort however at the cost of redundade.

As explained above the main parts concerned by this chargiharregister allocator and the
code generator. However, as for the code generator it has duplicated and adapted for the
SPU anyway due to major changes from its PowerPC base. Dherefvill not contain much
redundant code in the end. The implemented changes for thessomponents are described
in the following sections. As porting the code generatoluded a number of separate subtasks
their descriptions have also been split into additionaksghons.
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4.2.1 Porting the register allocator

The precompiler definitions for the register allocator riyosbnsist of values from the ABI as
shown in 4.1. As the SPU ABI [IBMO7¢] provides 128 128-bit widefied registers compared
to the 32 integer and 32 floating-point registers providetheyPowerPC a modification of the
register allocator definitions for the SPU was required.c8ithe different register allocator
functions simply use the existing definitions both the fiorts and the definitions had to be
duplicated. With a duplicate set of functions and defingione PPU functions use the PPU
definitions while the SPU functions use the SPU definitiongp&hding on what processor
type a method is JIT-compiled for the respective version fafretion can then be called. To
differentiate from the PPU versions the SPU versions of #fmdions and functions are simply
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suffixed with_SPU

/= integer registers =/

#define REGRESULT 3 [+ to deliver method results * [
#define REG.RESULT2 4 [+ to deliver long method results * [
#define REGPV 13 /+ procedure vector , must be provided by caller =/
#define REGMETHODPTR 12 /+ pointer to the place from where the procedure x/
/+ vector has been fetched */
#define REG.ITMP1 11 /= temporary register */
[ * [
#define REG.SP 1 /+ stack pointer */
#define REGZERO 0 /+ almost always zero: only in address calc. */
#define REGAO 3 /+ define some argument registers * [
#define REGA1 4
[ * [
#define INT_REG.CNT 32 [+ number of integer registers * [
#define INT_SAV_CNT 10 /+» number of int callee saved registers */
#define INT_ARG_.CNT 8 /+ number of int argument registers */
#define INT_-TMP_.CNT 7 /+~ number of integer temporary registers */
#define INT_.RESCNT 7 /= number of integer reserved registers * [
[ * [

[+ ABl definNeS skkkskkkhhhhhdhhhhhhhhhkhhhhhhhkkk kXA XA XXX XXX XXX XXX XXX A XXX XXX KA K K %

*/

#define LA _SIZE 8 /+ linkage area size * [
#define LA_SIZE ALIGNED 16 /+ linkage area size aligned to 16—byte * [
#define LA_SIZE_IN_POINTERS LASIZE / SIZEOEVOID_P

#define LA_LR_OFFSET 4 [+ link register offset in linkage area * [

Listing 4.1: PowerPC ABI definition for the JIT compiler
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Due to the first-come-first-serve approach of the registecaior it should profit from the vast
number of available SPU registers as values will only rahelye to be swapped out from the
registers to the stack.

4.2.2 Porting the code generator

As layed out in the introduction to this section the requsexps for porting the code generator
can be split into a number of relatively disconnected slistaghich will be discussed in the
following.

Supporting bytecode translations for the SPU

Supporting the correct bytecode translations for the SRhistly a manual and repetitive task
that involves going over all Java bytecode instructionsfarding the correct set of assembler
instructions to perform this operation on the SPU. Threkedht parts have to be implemented
for this as explained in section 3.1.2:

1. The macros to support the different assembler instmu¢tiomats
2. The macros that map the actual assembler instructioretoght instruction format

3. Appropriate machine code translations for the bytecosuctions

Using the SPU Instruction Set Architecture (ISA) [IBMO7fgptone was easy to perform es-
pecially since the SPU instruction formats are very sinttethose used on the PowerPC. This
way the PowerPC binary output macros as presented in li8tihgould be used as a base with
only few modifications.

Step two could be greatly simplified and automated. Usingdbépdftotext  the SPU ISA
could be converted to a flat text file and subsequently parsetywa Perl script which is
reprinted in 6.1. This script correctly outputs most of tequired assembler macros except
for some special cases with unusual syntax such as branthwmch have to be added or
corrected manually.

As for the third step, translating the bytecode instructmassembler instructions, the easiest
way to find out an appropriate translation was to look at hosvSFPU-GCC translates an in-
struction. If applicable a sho@program that performs th@pendant of the bytecode instruc-
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tion in question was written and compiled and the resultisgeanbler code examined using
spu-objdump . This tool is used to disassemble a binary file and print oetrdw contents
of the file along with the assembler instructions encodeck rEtevant assembler instructions
could then be incorporated into the code generator by ingetihe corresponding assembler
macros.

This approach is especially useful for instructions forethmo equivalent single or small num-
ber of assembler instruction exists. An example for thisusibn®. For these the compiler has
to generate a rather long stream of assembler instructidwshwvould be hard to figure out
from the ISA alone.

Builtin functions

As explained in section 3.1.5 builtin functions may be useiplement bytecode instructions

that are too complex to realize in the code generator dueetdoting sequence of assembler
instructions their translation requires. A good exampletiiis on the SPU is the aforemen-
tioned division especially with 64-bit values. In fact amtiog to the SPU-GCC the instruction

sequence for double-precision floating-point divisionsists of 175 instructions not counting

subfunctions called in the process.

Calling builtin functions comes with the overhead of branghirom Java code to C code. This
includes tasks such as setting up the stack frame accowithg ABI and copying the operands
to the argument registers while the called function mightehi® save additional registers in
order to restore them when returning. These tasks wouldeoeduired if the appropriate in-
structions were generated directly by the code generataweMer, especially in the case of the
discussed 64-bit instructions using builtin functionsaglyeeases porting the code generator.

In order to efficiently use builtin functions on the SPU it habe ensured that they are directly
available in the SPU’s LS. This can be done by appropriatekirig them to the SPU binary
that provides the entrypoint for Cacao on the SPU.

IEEE 754 compliance

Since Java 2 the keywosttictfp  has been added to the language specification as discussed in
[LY99] chapter 2.18FP-strict Expressionst can be applied to classes, interfaces and methods.

10On the assembler level division is performed by multiplywith the reciprocal value
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When encountering this keyword the JVM is forced to perforhflahting-point calculations
in this part under strict IEEE 754 conformance meaning thatresulting values must match
exactly those expected by following the IEEE 754 standard.

The IEEE 754 standard [IEE85] defines how computer architesthave to handle floating-
point calculations. This includes the different precisi@vailable, 32 bit for single-precision
and 64 bit for double-precision, rounding, handling of saleealues such as infinity and not-
a-number (NaN) and the binary representations of ordinadyspecial values. It also defines
how and when floating-point exceptions are thrown when sohtbese values and special
cases such as underflow are encountered during a calculatioaddition to the standard-
precision formats IEEE 754 also describes optional extpiecision formats which define
the minimum width of data types with 43 bit for single- and 8fbr double-precision. The
exact size is implementation-dependent.

When thestrictfp keyword is omitted the JVM may use whatever floating-poirppsrt
the current architecture provides. In many cases such as3fbthis includes the extended-
precision formats. Since these formats are not supportedl lychitectures and vary between
implementations omitting the keyword may result in the sgragram yielding different re-
sults on different architectures. Regardless of the keyvinondever, catching floating-point
exceptions is not supported by the Java language.

Since all compliant JVMs have to implement 8iectfp ~ keyword this is also true for Cacao.
While both the PPU and the SPU support floating-point numbéis 32 bits for single- and
64 bits for double-precision only the PPU fully conforms be tEEE 754 standard. As ex-
plained in [IBMO7a] chapter 3.1.Floating-Point suppordn the SPU the range of normalized
numbers is extended compared to IEEE 754 at the expensetaiicgpecial cases that cannot
be represented according to the standard. When a calculagétais a result not conforming
to the standard a flag in a special floating-point status texgeslledDIFF is set indicating a
deviation.

Using this flag implementing the IEEE 754 standard as reduoyeJava is possible. Cacao has
to be extended so that after evetyctfp calculation on the SPU the DIFF flag is checked.
When a non-conforming result is encountered two ways tofyeittis are possible.

1. The calculation is repeated on the PPU which supportsulhéEEE 754 standard. The
easiest way to do this is by issuing a stop-and-signal natifin and pass the operands
and the operator to the PPU which performs the calculatiosraturns the accurate
result.
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2. The correct IEEE 754 floating-point semantics are emdlatsoftware on the SPU. This
requires developing builtin functions that manually worktbe bit patterns provided by
the operands according to the standard.

While both these workarounds will induce a performance hit-HeEE 754 compliant results
should only occur for rare corner cases and are only releveintstrictfp calculations mak-
ing this workaround tolerable.

Enabling 16-byte stack and data segment slots

As discussed in section 1.1.3 the SPU can only load and stoeatire quadword at a 16-byte
aligned address at a time. A number of methods to accountiffdct in relation to the stack
and the data segment will be discussed here.

The SPU instruction set provides special commands to warkral the 16-byte alignment re-
strictions. For storing data to unaligned addresses aad@tinask can be generated based on
the offset of the target address to the next lower 16-bytentlaty by the family ofGenerate
Controls for{ Half,Doublé Word Insertioninstructions. The only requirement is natural align-
ment of the address meaning that for example a 4-byte valst¢lmeistored to a 4-byte address.
The data to be stored is loaded to the preferred slot of oristeegvhile the 16-byte aligned
quadword surrounding the target address is loaded intchanoggister. TheShuffle Bytes
instruction then picks values from one of the two data regssaccording to the bitmask and
places them in the appropriate slot of the target registee. target register’s contents can then
be written back to memory. For reading data the surroundiagleyord is also loaded entirely
into a register. A shift count is calculated based on the \it&-bffset of the actually requested
data within the quadword. Using this count the contents efrtyister are then shifted to the
left so that the requested data is moved to the preferredasitite data type. This mechanism
is shown in figure 4.2.

Another approach is to simply align all data to 16-byte besdegardless of their actual data
size and store them within this quadword the same way theglaoestored in a register. This
means that they can be immediately stored and loaded bark irgister without any further
operation. This is the solution used by the SPU-GCC for treksta well as for the data segment
and also documented in the SPU ABI which specifies that thé& starst always maintain 16-
byte alignment. As the stack contains many scalar valuels asche stack pointer and link
register this means that memory is wasted with the benefibgfler operation on the stack and
the data segment values. In order to maintain compatibilitiy the native SPU ABI and keep
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Memory Registers

1. load value to store 2. load surrounding quadword
16-byte border | - (register 0) (register 1)

D' U U B a b c d

S

1.0|1.1]0.1(1.3| 3. generate bitmask

target address
c
 ——

a|b|x|d 4. shuffle bytes

5. store back to surrounding quadword

Figure 4.2: Simplified mechanism for unaligned storing

the code efficient and simple this solution will be furthergued.

Implementing the 16-byte alignment requires a number ofifieadions. As the stack is con-
trolled entirely by the code generator part of the SPU thessary changes were fairly local-
ized. They simply consisted of creating a stack frame of @efiit size so that for every stack
slot 16 bytes were allocated. The data in the stack such astdhk register, link register and
the registers stored by the calling method are then offset the stack pointer by a multiple of
16 according to the stack layout from the SPU ABI.

Adapting the data segment to 16-byte alignment was more loceigd. In order to simplify the
process both the data segment generation for PPU as well 88t methods was modified to
observe 16-byte alignment even though this is not a reqeneifior the PPU. However differ-
entiating between the PPU and SPU data segments would hqieed: an additional number
of conditionals. Based on the introduction of the data segmmesection 3.1.2 the actual steps
performed were:

1. adjusting the fixed offsets for the method-specific progeto the next 16-byte aligned
number

2. aligning the current data segment lengths to the nextipleilbf 16 when adding a new
element

3. fixing some offsets in the stub compiler method which wavks fixed offsets

Once the correct locations to modify were identified the dgesnwere fairly easy. However,
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especially for the stub compiler method finding the requeleanges was non-trivial as it uses
numerical values to describe the offsets instead of syrlooles.

Accessing SPU symbols in the PPU code generator

For some functions it might be necessary for the code gesret@temit a branch to an SPU
function that is implemented in the C-part. This includegiinal helper functions as well as
builtin functions. As the code generator runs on the PPU disdwot have direct access to the
SPU functions or more generally symbols included in the Siddrig which are required to cal-
culate the branch target to call such a function. As the SRdriithat is linked in with the PPU
binary is also an ordinary ELF file it is possible to read in téguired symbols manually. For
this purpose the symbol designating the SPU part which isefytpespe program _handle _t
provides a pointer to its ELF structure which contains adl tequired information. The exact
implementation of this is structure is reprocuded in 4.2.

/xx SPE program handle

x Structure spe_program_handle per CESOF specification

x libspe2 applications usually only keep a pointer

* to the program handle and do not use the structure

x directly.

*/

typedef struct speprogramhandle {

/%
* handle_size allows for future extensions of the spe_program_handle
* struct by new fields, without breaking compatibility with existing users.
» Users of the new field would check whether the size is large enough.
*/
unsigned int handlesize;

void xelf_image;

void *toe_shadow ;

} speprogramhandlet;

Listing 4.2: Implementation of the SPE program handle

A starting point for the code is taken from the libspe2 sosyepecifically the included ELF
loader. Once it has loaded the required files into memory tietgr *elf _image provides

a reference to the runtime representation of the SPU binasyan ELF binary consists of a
number of sections which may include symbols the loader digmise all sections included
in the ELF image looking for a@oe section. Once it has found this section it iterates over
all symbols looking for a few specific ones. Using this coda dmse writing a function that
looks for a given symbol in all sections was fairly easy. Asated with the symbol is the offset
at which it will later be found in the SPU’s LS. This offset cdren be used with thbranch
absolutanstruction which branches to a fixed address.
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In its current implementation the code goes through theee®iPU binary every time an SPU
symbol is requested. As an improvement the symbol coulddmdeld once and then be saved in
a table allowing for a faster lookup on subsequent runs.

4.3 Shared heap access

Apart from essential steps such as porting the code gemdmathe SPU an efficient access
to shared data on the heap is crucial to the performance dritiee system. Unfortunately
providing a transparent solution, one that does not recqueeial programming constructs or
mandatory modifications of the source code, has not been ging effort by the Cacao team
so far. This is understandable as the concept of Java on GelpBesents a novel approach.

As discussed in section 3.2.2 shared heap access requineso@nof unforeseen and therefore
large modifications to Cacao. For now the heap and therefbrbpcts reside in only one
memory and may be directly accessed the same way by all threlsidh share the same mem-
ory space. With the SPUs and the PPU using different memaneschanism will have to be
developed to access single members or entire objects afficfeom both processor types and
across all memories.

In order to understand the challenges this step poses itcsseary to understand the multi-
threading support provided by Java and the consistencyagtems it makes. This has been
discussed in section 1.2.3. A more formal overview of theaJaemory model is given in
[GJS05] chapter 17.4vlemory model It defines how different actions such as reads, writes
and thread events may be reordered by the JVM and which stdh@g must affect at which
point. Based on these bounds a number of concepts to suppoeidsheap access along with
their advantages and downsides will be presented in thisec

4.3.1 Individual non-cached access of fields

In the solution used for the prototype implemented as pdttisfthesis the heap and all objects
will only be kept in main memory. Object fields, the data merslod a class, will be accessed
individually via DMA transfers. The steps required to implent this solution will be described
in this section.

The major disadvantage with this simple solution lies infde that every heap access requires
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at least one DMA transfer and thus will pose a major perforcedrarrier. Since fields are at
most eight byte large the latency of DMA transfers will ghgatutweigh the possible band-
width. Additionally the GC requires an extension. Due to fieé&s being transferred to the
SPU references to objects in the main memory may be stordaiSPU stack and in the SPU
registers in which the stack may partially reside. The GCld/dave to include these in its
calculations about whether an object is still alive. In orttenot cope with this issue at this
point the GC will be turned off. This is supported by Cacao asmalation switch and results
in heap space not being freed. For small testcases thiseptatie.

This first simple solution also has to take the alignmentictgins of the MFC into account,
mainly the fact that the 16-byte offset for both the target #ve source address must match.
Therefore a 16-byte entry is added to the data segment of&achmethod which serves as a
temporary storage for DMA transfgrsDue to its size every 16-byte offset of a field in main
memory can be matched in the LS. As the alignment of the fietdam memory is not known
at JIT-compile-time the exact address within the temposéwyage to or from which it will be
transferred has to be calculated at runtime so both 16-igets match.

The required code sequence for storing a field can be foun@ attile a graphical explanation
is given in figure 4.3. The actual steps required are:

Load the value to be stored into a register
Shuffle the value to the correct slot according to the bfiséhe target address
Store the register contents to the temporary storage

Calculate the matching source address according to tbetaff the target address

o M w0 nhoRE

Perform the transfer

For load operations this sequence is mostly reversed.

/= sample code for storing a static field =/
/+ sl contains the value to be store, REG.ITMP3_.SPU the target address =/

/+ generate the bitmask for moving the actual value to the right slot according to the <
target

address «/

MCWD(0, REGITMP1.SPU, REGITMP3_.SPU);

/+ use the bitmask to shuffle the register accordingly =/

M_SHUFB(s1, sl1, sl, REGIMP3.SPU);

/+ store the register contents to the temporary storage =/

M_IST(s1, REGPV_SPU, MfcTemp);

2This is not thread-safe as the data segment is shared adregsudtaneous executions of a method. However
executing several threads on one SPU is not possible se#his is negligible
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Figure 4.3: DMA access to individual object members, stpariield

/+ calulate the 16—byte offset of the target address by ANDing it with OxF =/
M.ANDI(OxF, REG.ITMP1.SPU, REGITMP3.SPU);

/+ add the offset to the procedure vector =/

MA(REG.ITMP3_.SPU, REGPV_SPU, REGITMP3.SPU);

/* add the offset of the temporary storage, this gives the LS target address x/
M_Al(MfcTemp, REGITMP3_.SPU, REGITMP3_SPU);

/= emit the correct code sequence for storing the value in the main memory =/
emitmfc_spu (jd, MFCPUT.CMD, REGITMP3.SPU, REGITMP1.SPU, 4, 5);

Listing 4.3: Code sequence required to store an unalignethviDMA

Since the method to get or set a value will be executed on theepsor where the object resides
ie. on the PPU all threads regardless of where they are beeguted will access the same
monitor. Therefore synchronized access can be realizedgasred by the standard provided
the Java program is thread-safe. Accessing the monitor then8PU can be done by using
atomic DMA transfers since the monitor is just an address @mory. Using atomic DMA
transfers ensures that no other thread may modify the nromitde it is being locked.

4.3.2 Sharing objects between processors

One efficient and transparent solution is based on the fattiths the Java programmer’s

responsibility to ensure thread-safety. This means in that non-thread-safe parts may be
executed in an incoherent manner while still being compltarthe Java specification. The
solution introduced in this section exploits this conceptessing only those fields in main
memory that are used in synchronized statements whilelyocathing the other fields. The

individual steps required to implement this solution wél ébetailed in additional subsections.

One of the main problems with efficient shared and thread-sedess lies in the fact that Java
does not support locking individual members of objects dmdad-safety being the responsi-

60



4.3 Shared heap access

bility of the Java programmer. Even when all fields of an obpge private and it provides
synchronized getters and setters there is no guarantesotiatother method of the object does
not modify these fields directly. Therefore the JVM can onlgke assumptions about which
members are actually accessible directly or indirectly by one thread at a time. However, in
order to achieve thread-safety for shared objects the anoigier must ensure that this object is
accessed only from within a properly synchronized block.

Access objects locally when possible

One approach to achieve efficient object access is to copgrttiee object that the SPU will
work on to the LS. This must also include the object’'s methidds the getters and setters
so that they can be executed on the SPU. Otherwise the behkfvimg local access to the
object’s fields would be negated by having to execute thessarethods on the PPU. As long
as the object includes non-synchronized methods these maydruted directly on the SPU
working with the available local copy without observing eoénce with the original object in
the main memory. This is possible since the semantics of dav#ot guarantee a consistent
state in this case. As for synchronized methods, these maydmited on the SPU if locally
available however all operations on object members withgyrachronized block or method
must be executed on the original object so as to ensure tensys

Being able to execute an object’s methods locally also requompiling them for both the PPU

and the SPU. In principle this is not a problem as each metifimdiructure points to a codeinfo

structure which in turn contains the important informataiout the code such as its location
and size. The methodinfo could thus simply be extended ttagoone codeinfo structure for

both processor types. When the respective codeinfo for a&psoc type is a NULL pointer this

indicates that the method must be compiled.

Track object references

In order for this method to work it is required to track theeatijreferences when they are passed
between methods. This is possible since the Java langutigeedtiates between actual object
references and primitive types featuring the same bit pati&dditionally, casting a primitive
type to an object is not directly supported by Java and require creation of a new object. This
way the JVM can then at first create new objects in the memaygespf the creating method.
Once the object reference is passed to another method thet oy have to be moved to the
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main memory for shared access or can be kept in its currentamyeifrthe method is executed
on the same processor.

As an optimization the JVM could intercept the creation olvnabjects to which no local
reference is kept when they are being passed to a method dferenli processor. Since the
calling method does not store a reference to the object ibisonger accessible from that
processor meaning that it can be moved without any confljattess issues. An example for
this is passing a copy of an object usiigne() , which duplicates an entire object, directly in
the argument list of the method. Additionally the JVM may gexte the required instructions
for moving the object before the method is actually called.iléhis must be done with care as
values in the object may still change it could hide the layesfche required DMA transfer.

Transfer scattered objects and references

One issue with moving objects between different memori¢sadact that objects often refer-
ence other objects by internally, on the JVM level, usinghpais. Due to this mechanism an
object with all its further referenced objects may be fragted across memory. This is mak-
ing it hard to efficiently use DMA transfers to move the objecanother memory since DMA

transfers usually operate on contiguous memory areas. @medies for this problem may be
used:

1. The SPU requests an address list for the object in quésyiomtifying the PPU with a
mailbox message or a stop-and-signal call and passing jeetobference. The PPU then
resolves the chain of objects referenced by the given glpessibly only up to a certain
depth, and transmits the generated address list to the SBgdBa this address list the
SPU then initiates an MFC list transfer which copies thererdbject and its references
to the LS in one step. After adjusting the object referencele LS addresses the object
can then be used.

2. The SPU only transfers the first level of an object of whiothldthe address as well as the
size is known. This includes only primitive types, objederences will not be resolved
but their values transmitted. As an additional improventaetprogram flow could be
analyzed as to whether the referenced objects are actwedlyed. If they are, they can
be transferred, possibly some time before they are actnakyled in order to hide the
latency of the DMA transfer. The object’'s methods will alsdyobe transferred once
they are actually required as resolving their code locadiod size requires a number of
indirections.

62



4.3 Shared heap access

Conclusion

This solution will almost certainly produce inconsistetates when not enough care is taken.
Due to the latencies of the DMA transfers and the disjoint mees of the processors the
chance for conflicting accesses to fields is higher than witladitional Java multi-threading
Implementation on a shared-memory architecture. Howéwetava specification permits these
inconsistencies if they do not violate the Java memory mddiiile great care has to be taken
to operate within these constraints the discussed solptiovides for great flexibility. Without
any further modifications multiple threads may each worlhaut the latency associated with
DMA transfers on the uncritical parts of their local copy of @bject. Critical parts may be
protected as usual by synchronized statements resultititgead-safe execution at the cost of
reduced performance. Due to multiple threads competing flack and having to wait at a
certain point however synchronized statements in Javayala@me with a certain performance
hit. While this impact has been significantly reduced oveldisefew years it still is noticeable
so a slowdown coming from this solution is acceptable.

As with the first solution presented object references msy laé¢ stored in the SPU stack and in
the SPU registers. The GC will have to include these refe®ntits calculations. As the GC
represents a completely different and complex field yet noayeniently be turned off during
development extending the GC in this fashion is out of thgeaaf this thesis. However, a
principle idea how to realize a solution to these challeng@sesented in section 6.3.

4.3.3 Read-only copies on the SPU

Another solution includes a few simplifications that are beer not transparent to the Java
programmer. If objects passed to methods executed on thea&Piéen as read-only copies of
objects in the main heap this would allow the GC to ignore tR& Stack and registers in its
calculations. The objects in the SPU heap could simply beadited without writing them back
to the main memory once the SPU method has finished. If thétsedfunethods executed on
the SPU are to be kept they have to be explicitly written bddks simplification is especially
rewarding since access to the SPU registers from the PPUgased by a GC for Java on
Cell/B.E. is very expensive performance-wise. Accessingégesters requires the kernel to
load a small program to the SPU that writes out the contentiseofegisters to main memory.
This is almost as expensive as an entire context-switchiwbicurs when a new program is
moved to a used SPU.
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4.4 Swap code in and out of the LS

In order to provide fast execution of methods on the SPU iesrdble to keep frequently used
methods and those that may be executed soon in the LS. As theoksles only limited space
a mechanism providing a cache of methods has to be develéftedintroducing the solution
chosen by the SPU-GCC an approach to this problem for Java ¢B Eelwill be discussed in
this section.

4.4.1 SPU-GCC overlays

The SPU-GCC contains a mechanism that can be used to split &Rthms if they are too

large to fit entirely into the LS. The different parts will th@automatically be transferred to
the LS or cached as required. A detailed introduction torgghanism is given in [IBM0O7c]

chapter 4SPU code overlay

In the approach used for the SPU-GCC code overlays singldiduniepresents the smallest
unit that can be cached. Functions can be combined into sggmviich are always transferred
entirely to the LS. Multiple segments form a region of whicftlesively one segment is kept
in the LS at a time. So if another segment is needed the cilyi@athed segment in this region
if any is overwritten. When branching between segments taedbris actually redirected to a
stub function by the compiler. This stub function for whicheoexists for each real function
fetches the target segment from main memory if necessaryhemdjumps to the real branch
target. As the runtime location of all functions is known atrpile-time all these branches can
be generated at compile-time even though the target funati@ay not actually be in the LS at
the time of the branch.

When using the SPU-GCC the distribution of functions into sexgis and regions has to be
defined manually in a linker script. Apart from preparing theary for overlays the linker also
automatically inserts the stub and other required funstiemd tables to maintain an overview
of currently cached segments. This manual creation of @tiskript allows for a reduction of
swap operations when careful manual analysis of the cal@pgndencies between functions is
performed. Ideally the calling and the called functiondesi different regions so the contain-
ing segments do not have to be overwritten when calling thhogeand again when returning.
With this approach the developer has to manually ensurdltbedinker script always matches
the actual program.
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The SPU-GCC overlay support imposes two size restrictiomsledideal circumstances con-
cerning segmentation and runtime data the total possibéedsithe entire SPU program is 512
MiB and a single function cannot be larger than the entire $ 8aanot be further segmented.

4.4.2 Caching Java methods

As the prototype built for this project uses the SPU Softwdamaged Cache library this library
and its usage will first be introduced in this section. Aftards its implementation in the
prototype will be explained.

The SPU Software Managed Cache library

The SPU Software Managed Cache Library [IBMO7b] is commonbidu® cache frequently
required data in the LS. As the cache is managed entirely twae it can be customized for
the needs of the program that uses it. This includes for elathp size of the cache lines,
the number of sets, the associativity of the cache and whétpeovides read only access or
read and write. Including the cache in a program requirdsmgethese parameters and other
using precompiler definitions and then including a headergdibvided by the library. With
these few prerequisites the compiler automatically ressetive required space for the cache and
provides the methods to access it. The precompiler defiisitzan be re-set and the header
file re-included several times which allows the creation oftiple caches for different needs.
The flexibility of a software managed cache however comdsegptice that it is not coherent in
respect to changes in main memory. When a value cached in tlsech&nged in main memory
this change will not necessarily be visible in the cache.

The SPU Software Managed Cache library provides differdptfiaces, an external and an in-
ternal one. The external or safe interface acts only on theesancluded in the cache, not
the way they are stored. This means that a read from the caamgcache rd(...) given an
address in main memory returns the value at that address. Whesmlue at this address has
already been cached it will be returned from the cache otiserivwill be transferred to the
LS. Similarly the write commandache wr(...)  writes out a value to a given main memory
address. The internal or unsafe interface allows directsscof the cache lines. When the
program notifies the cache that it wants to read or write amess$dn main memory by call-
ing cache _rw(...) an LS pointer to the cache line containing the data is retlionee it is
available. As the data in that line may be cast out betweessaes it must be locked and after-
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wards unlocked usingache _lock(...) andcache _unlock(...) respectively. Additionally
the internal interface provides asynchronous access. f®icase two commands are used.
cache _touch(...) which makes the cache prefetch the requested main memotgntsrand
cache _wait() which waits until this data is actually available.

Implementation in the prototype

As explained the SPU Software Managed Cache library is cortynused to cache data in the
LS. However, as the machine code translation for the Javiaadets generated at runtime it can
be regarded as such. Therefore this library provides aldaitaol to cache frequently required
functions in the LS.

The two main benefits it provides are:

1. No additional code to setup and control DMA transfers gaineed as the library provides
all necessary functions

2. 4-way set associativity of the cache ensures a low riskolfie-thrashing even for calling
chains that occupy the same set

N-way set associativity determines in which cache lines tth&edata for a given main memory
address may be stored. The possible cache lines are usesiyrined by calculating a hash
value of the target address. The higher thehe more possible cache lines the data may be
stored in and the lower the risk that certain access pattatesssing data from addresses with
the same hash value constantly cast each other out of the.cégplied to this project this
would be the case with a calling chain of methods that occhpysame set. With 4-way set
associativity 4 different methods of the same set can bedakfore the first one has to be cast
out of the cache.

A survey on the distribution of the size of compiled methods been conducted f&CJ
the Java compiler used by the Eclipse platform, itself dyfaiomplex Java program. It has
shown that the vast majority of Java methods is small in siziact around 95% of all methods
fall below the 4 KiB border. This result is expected as Javid s object-oriented approach
encourages the use of many small methods that perform omyited set of operations on an
object. 4 KiB for a cache size line also marks the arbitranytlthe cache library supports. For
most data caching needs this size will likely suffice howes@ne methods may exceed this
limit as shown. The limitation can be circumvented by moitifythe header files for the library
and use a private copy. While this is not a clean solution itkaavell enough for a prototype.
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4.4 Swap code in and out of the LS

However, with the solution for partitioning a method intogfiksize blocks presented in the next
section this may not be necessary. Alternatively, it coddlbcided that methods that are too
large are instead executed on the PPU.

Including the prerequisites for the cache can be convdgieone in the C-part of the SPU
binary so that the SPU-GCC can set up all required functiodsna@mory areas. The exact
semantics for calling the cache largely depend on the mésinaio branch between multiple
methods on the SPU. Therefore further details of its impleatéeon in the prototype and the
way it is called will be given in section 4.6.2.

4.4.3 Segmentation of functions

Even without the arbitrary limitation of cache size lines@fi-size must be set for them. As the
machine code translation for a Java method may exceedrthitsals well a mechanism to break
the code into smaller blocks must be developed if larger Ishaethods be executable on the
SPU. The issues of implementing such a mechanism will bélypdescussed in this section.

As this mechanism will work on the assembler code level omly kinds of instructions will
have to be adjusted, load and store instructions and bran@&iace the space for a method’s
code is allocated at runtime and its final location not eveavknwhen this method is JIT-
compiled all of these instructions work almost exclusiveiyh offsets. Most of them such as
accesses to the data segment are relative to the proceatoe which is kept in a register. This
way as long as the data segment fits into one block an instructianother block may access
the data segment by accessing the address in the procedtioe pieis an offset. This should
be the common case with an appropriate block size. Howeaés, segment accesses will be
problematic when the data segment is split across multijplekb. In this case the procedure
vector may not point to the same block as the data segmenertamguested so the relative
load or store does not work. Additionally relative branchié®se that branch to the current
instruction plus an offset, across a block boundary arelpnoatic. Since the blocks are cached
as requested the current LS address of a block is not known.

The mechanism should ensure not to break constructs sucbsihto different blocks. What-
ever solution is chosen for this problem branching withia siame block will certainly be less
expensive performance-wise. Observing the structure df sonstructs can be achieved by
using the information generated in the first step of the Jimpmitation, the basic block deter-
mination. This step breaks up the method after every bygawstruction that may result in
a jump so that every basic block marks the potential target joimp. With this information
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available it will be easier to limit the number of jumps a@eggments.

4.5 Selective execution on the SPU

In order to give the Java developer a way to select which nastisbould be executed on the
SPU three different solutions seem feasible. They will lsedssed in individual subsections
and afterwards evaluated. A fourth option, leaving it to IMM to decide which methods to
offload to the SPU will be briefly presented in section 6.3.1.

4.5.1 Create a special class or interface to mark SPU threads

In Java a thread is created by deriving a class from the slagsithread or implementing
the interfaceRunnable . The entry point for the thread is the methaa() which has to
be implemented by the subclass. In order to start the thitsahethodstart()  is called.
Similarly to this a thread designated to run on the SPU coxtidnel SpuThread or implement
SpuRunnable and the required methods. These special cases would haeentebcepted by
the JVM and then turned into an SPU thread.

The advantage of this approach is its similarity to the qur programming model for Linux
on the Cell/B.E. as well as the Java multi-thread programmindeh Both usually feature a
single-threaded main program that at some point branchiesaimumber of threads. As for
the C programming model, the main program is executed onfewhile the threads run on
the SPU. Java programs usually execute the main programharttireads on the same CPU.
With Java on Cell/B.E., the main program would still be run om BPU while the threads are
executed on the SPUs.

4.5.2 Mark SPU methods and classes with annotations

With the recent addition odnnotationgo the Java programming language another possibility
has opened up. Annotations represent a way to add metaedatactions and classes that can
be processed at compile-time, at run-time or by externdstsach as test frameworks. With
these it will be possible to mark certain methods or entiess#s for execution on the SPU.
When the JVM encounters such an annotation it will create do tBiread if necessary and
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4.5 Selective execution on the SPU

execute the method in that thread. Another benefit of thiscgmh lies in the fact that SPU
methods can be executed at arbitrary times in the main pmogsasimply calling them. The
downside however is that the methods would be called syncdusly meaning that the caller
will have to wait for the called method to finish.

4.5.3 Group SPU methods and classes in a special package

Sharing the benefits and downsides with the annotationappris another solution where
the classes and thus the methods designated for executitve &PU will be grouped together
into a package such asm.ibm.spu.math . In the Java programing language classes with
similar functionality can be combined into a so-called gk This package along with the
access modifiers suchpisvate  andpublic  also governs object access in the way that certain
classes and methods may only be available to classes andaseththe same package. Apart
from the lack of meta-data this solution also provides fotemicview of which methods are
to be offloaded to the SPU. While it grants full flexibility alidbe point they are executed at
the methods are also executed synchronously. Again, the diINhave to intercept calls to
methods in this package and execute them on the SPU.

4.5.4 Conclusion

While the two latter solutions share some interesting fegtthrey would require a change in the

semantics of a Java program. An interesting applicatiomede approaches lies in a scenario
that is closer to a distributed-memory model with messagsipg. Calling these methods could

trigger execution of a method on the SPU. This method is tikenwted asynchronously and a

later call to another SPU method fetches the results caémlila the meantime.

However, since the Thread approach most closely resenti@damiliar Java and C program-
ming models and allows full exploitation of the CBEAs multireaded nature it presents the
most favorable solution and the one that will be further pads
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4.6 Communication and branching between SPUs and PPU

The JVM has to support a number of interactions between thed?id the SPUs. These inter-
actions will be discussed in this section. These includarnal JVM functions such as resolving
of class members at runtime and branching from one procéssmother. Since especially the
branching is complex the different cases, SPU to PPU and F&PU, will be further de-
tailed in additional subsections. Of the remaining casds PPPU is already implemented
in Cacao and PPU to SPU is supported as described in secti@ ZHis calling scheme only
allows passing information about the method to executeawitlany further arguments which
is sufficient for starting a thread or the main method on thg.SP

4.6.1 Lazy resolving on the SPU

In order to allow lazy resolving of class members from the SR&patcher as described in
section 3.1.4 has to be extended. These extensions areallatraightforward and can be
realized by using the stop-and-signal mechanism. The atdr@acao patcher stub sets up its
own stack and stores the data that is to be passed to the paicteere. This mechanism
can also be used in a similar fashion on the SPU, requirinp@®mly modification that the
stack pointer be stored right after teep instruction. This way the stop-and-signal callback
function can resolve the LS pointer, reach the informatiomnes! in the patcher stub stack and
pass it onwards.

Due to the SPU’s alignment restrictions this requires a remobsteps. First, a gap for the stack
pointer has to be left in the instruction stream right afterdtop instruction. Then the right
code sequence for loading the quadword surrounding thé& pi@ioter position, generating a
bitmask and inserting the actual stack pointer at the cobofset in the quadword and storing
the prepared quadword again has to be generated. A grapécakentation of this process is
given by figure 4.4 and the required code sequence is listédlin

/+ set up the opcode + the LS pointer = opdata for the PPE-assisted call =/
M_ILHU (((opcode << SPUCALL_PATCHER) & OxFF00), REGTMP4.SPU);
MMOVE(REG.SP.SPU, REGITMP5.SPU) ;

M_OR(REGITMP4_.SPU, REGITMP5.SPU, REGITMP4_SPU);

/+ load the quadword surrounding the gap for the opdata =/
MLQR(5, REGITMP5.SPU) ;

[+ calculate offset and move the opdata to the right slot =/

disp = ((u4 x) cd—>mcodeptr )— ((u4 =) cd—>mcodebase);

MCWD((4 » (disp + 4)) % 16, REGSP.SPU, REGITMP6_SPU);
M_SHUFB(REGITMP4_SPU, REGITMP5.SPU, REGITMP4.SPU, REGITMP6_SPU) ;
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Figure 4.4: Storing an LS pointer at runtime

/+ store the prepared quadword right after the STOP =/
M.STQR(2, REGITMP4.SPU) ;
M_STOP(0x2107) ;

/= leave gap for the LS pointer =/
cd—>mcodeptr += 4;

Listing 4.4: Code sequence to store an LS pointer at runtime

The callback function only has to transfer the SPU stack anformat suitable for the Cacao
patcher and can then call it. The patcher itself can run alona®odified as it has direct access
to the LS of the SPU that called the patcher. As methods maybeed out of the LS the
original version of the compiled method in the main memory teabe patched as well. This
way the modifications are not lost when this method is castfrom the LS. Resolving the
address of the code in main memory is possible through tleenvEtion provided to the patcher
which also indicates the method that has called the memlaklitidnally multiple SPU threads
may try to concurrently resolve the same member. As Cacaadireupports multi-threading
entry to the patcher is protected with a lock on the objedttttmmember belongs to. Acquiring
this lock blocks until it has been released and exits if iedet that the member has already been
resolved and the calling method been patched. In order tarernisat the method gets patched
correctly on all SPUs this second exit condition for the patchas to be removed. Subsequent
calls to the patcher with the same member will still be fastace only the references on the
SPU have to be modified, the actual resolving of the membdrdady done.

Once the patcher and the callback function have returnezigre is automatically resumed on
the SPU right after thetop instruction plus four bytes so that the stack pointer is &
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4.6.2 Branching from the SPU

Depending on the type of method called different informatgrequired to resolve the location
of the target method’s code. As described in section 3.isbntlay just be the address of the
method’s information structure or the object header and rabsu of offsets. The ways to
resolve the location of the code when branching from the SPé&ither a method on the PPU
or another method on the SPU will be explained in this section

As a first solution for the prototype all required informattitm resolve the code is passed to the
PPU for every method call regardless of where it will be exeduThe way this data is handled
on the PPU depends on where the called method is to be exeandedill be further detailed

in the appropriate subsection. The easiest way of passiogmation between these two pro-
cessors is the stop-and-signal mechanism. The memory seeldfar passing the arguments is
realized as an additional reduced stub stack frame contponly the stack chain pointer, link
register and arguments. The LS pointer to the first argunsehen passed to the PPU. The Java
method will set up this stub stack frame itself and insertltBepointer to it in the instruction
stream before issuing thsop instruction. The deallocation of this frame depends on twet
the method is executed on the PPU or the SPU.

SPU to PPU

When calling a method on the PPU from the SPU the call is symdu® so the SPU will have
to wait for the method on the PPU to finish before it can resureewion. Therefore using
the slow but simple to use stop-and-signal mechanism isuadedor this purpose. Using the
information the PPU is being passed via the stop-and-saikit can determine which method
it has to execute.

An additional requirement for calling a method on the PPWbistbre all arguments to this
method on the stack so they can be accessed by the PPU. Thgaroelator already supports
reading the given arguments from the memory area into thenaggt registers when entering
a method as well as writing out the arguments from registersemory when calling another
function. Thus, it was only required to enforce that wherlimgla method on the PPU all

arguments would be stored in memory. The callback functiem transforms the data into a
structure suitable for use with a special transition fumtdi that allows calling a Java method
from C code. The return value of that method, if any, is theiitar back to the LS by the

callback function and is picked up by the Java method onceutiam is resumed. The stub
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4.6 Communication and branching between SPUs and PPU

stack frame is then deallocated by the Java method.

SPU to SPU

Branching between two methods on the same SPU requires a naimedifications. Two
points have to be ensured for this to work:

1. A method has to be able to return to the point from which is walled in the calling
method

2. The information for transferring the calling method’sledback into the LS if necessary
has to be provided

Item one is a common requirement and is already ensured hyg tis¢ link register. Using a
variation of the branch instructions the address of theuesbn following the branch is stored

to the link register. Fofeaf methodsthose methods that do not branch to further methods, the
method can simply branch to the address stored in the linkstergonce it is done and thus
resume execution of the caller. For non-leaf methods therbgister has to be stored in the
stack frame of the calling function as defined by the SPU ABlc®a non-leaf method is done

it loads the original link register from the stack frame amaah ceturn to the calling method as
well.

The required information for item two consists of the addresthe data segment in main
memory, the combined size of data segment and code and tlyp@nt into the method. The
entrypoint marks the end of the data segment and the begimiithe actual code. This in-
formation is obtained by passing the required argumentsasrithed above to the PPU in a
stop-and-signal call. The PPU then resolves the requestednation and stores it directly in
the LS in place of the methodinfo or objectinfo. This saves $#PU from issuing a number
of small DMA transfers to resolve the pointers itself. Withstinfo available the SPU then
branches from the Java method to a short assembler funtiddrcallscache _rw(...) from
the cache library which transfers the method’s code intolthend returns an LS pointer to
the respective cache line. The assembler function stoeesetrn address to the calling Java
method, then adjusts the procedure vector and branches tetly transferred method while
setting the link register. The connection between the diffestack frames and methods can be
seen in figure 4.5.

As seen in figure 4.6 when the called Java method returns libdates its stack frame if it is
not a leaf method and branches to where it was called fronhjsrcase the assembler function.
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The stack pointer then points to the called method’s stutkdtame (callee stub). Since the
required information for resuming execution of the callmgthod is available from the calling
method’s stub stack frame (caller stub) the callee stub adlatated after retrieving the link
register for the calling method from it, leaving the stackper to point to the calling method’s
stack frame. The stack pointer is saved and the stack cleiadrone more step back to the
caller stub. The calling method is transferred back intoLtBaising the cache library, its stack
pointer restored and execution resumed where it had prelyidaeen stopped. The stub stack
frame is deallocated by the assembler part right beforermeiy to the Java method.

Special care has to be taken with the first Java method thatlesic With just the mechanism

described above the SPU would try to locate a non-existugstack frame for the method that
called the first Java method. In order to prevent this therggjister is adjusted for the first Java
method so that it does not return to the DMA transfer stub thsiieiad to an exit function that

will safely move on to the C-part on the SPU from which the fiestaJmethod was called.
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5 Evaluation

As part of this thesis a prototype has been developed in wdoaie of the concepts described
have been implemented. As a prototype it provides only afppb@oncept and is not yet
capable of running full programs. However it provided gosd in testing out some ideas. The
capabilities of this prototype will be examined in one sus® while some rough guidelines
and advice for a programing style that may benefit Java onECEllAvill be given in another.

5.1 Capabilities of the prototype implementation

The task of porting a JVM is in itself already a very complexi @ime-consuming one. How-
ever, especially for such a unique architecture as Cell/B.&ymew challenges have to be
solved and new concepts developed. Therefore not all sakifpresented in chapter 4 could
be successfully implemented during the limited availabieetfor this thesis. Currently the
prototype is capable of doing the following things:

* It can set up a single SPU to await mailbox notifications frima PPU. The SPU then
independently fetches the method'’s code using the SPU Sdtanaged Cache Library
and executes it.

» All submethods that are part of a class calbpd will also be executed on the SPU. Using
the branch mechanism described in section 4.6.2 the coded@ubmethod will also be
fetched using the cache library. All required informatiar feturning to the calling
method will be stored in stub stack frames. This solution eexssen during development
instead of one of the ideas presented in section 4.5 as it agsreto implement and
provided a simple way to test the different branch semabgt&een processors.

« All other methods will be executed on the PPU to which the SRy pass arguments as
explained in section 4.6.2. This way the SPU is for example @hprint out values to the
console by calling the 10 methods on the PPU.
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* Most types of members can be lazily resolved from the SPUgugie mechanism dis-
cussed in section 4.6.1 which includes passing the reqinfednation to the PPU using
a stop-and-signal notification.

» Object access follows the principles described in sed¢fiéhl. This means that each
access to a field from the SPU requires a single DMA transtedata will be cached.
For the prototype no thread-safety mechanisms are obsenegdhe GC has not been
extended to account for object references on the SPU.

» Apart from object accesses and method calls the code gen&vathe SPU mostly sup-
ports arithmetic operations. These were implemented éarljwo reasons. First, they
could be used to test if other bytecode instructions that byad store data for example
from the stack as well as the handling of arguments and ezgistere correctly imple-
mented. Second, they can be used to create load and perfaasureenents on the SPU
when calling them in a loop. Therefore the necessary bramsthuictions for setting up
simple loops were also implemented.

The current prototype heavily relies on stop-and-signts$ ¢ar many different situations. As
they provide an easy way to pass information back and fortvden PPU and SPU they were
used in many cases during implementation to facilitate tfierdnt steps. For some situations
such as calling the patcher this mechanism makes sense &Pthdéas to wait for the PPU
to finish its part. However for others such as obtaining tlgiired information for calling a
method other ways such as an asynchronous DMA transfer mayobe suitable. This has the
benefit of enabling the SPU to fetch the information in thekigaound ahead of time and it
eases the load on the PPU which may become a bottle neck wheat@mgnumber of SPUs
constantly call methods on it. Depending on the situatiomaly also improve performance
on the SPU. While the overhead of a stop-and-signal call has beeasured to be at around
1.3 x 10~° seconds obtaining the required information via DMA may bstdadepending on
how many pointers have to be resolved.

5.2 Programming advice

Due to the fact that only very limited Java programs can beslintended by the prototype in its
current stage it is hard to give any programming advice. Heweith the current non-caching
model in use and even more so with the later shared heap anodetwith a local cache it will
be very important to be careful with synchronized statesiefhey already provide a perfor-
mance barrier for traditional JVMs where all threads actiessame memory space. However
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with the disjoint model of Cell/B.E the penalty will be much he&y due to the increased latency
that comes with multi-threading actions such as synchatioiz across different memories and
cores. When a program manages to keep these barriers lowprbi&ling and handling data

in a way that allows threads to work largely unsynchronizesi program could achieve a good
performance increase by employing the SPUs.
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6.1 Experiences during porting

6.1.1 Infinite recursion with debug flags

One of the gravest barriers in the early stage was gettingffioégal Cacao release to run on just
the PPU of a Cell/B.E. based system. An unfortunate combmaticompile flags led to an
infinite loop. A certain Java method in Classpath responé$iblproviding interactions between
Classpath and the JVM called tipentin() Java method in its constructor. At this point
the class providingprintin() was not yet initialized so this step had to be performed first.
Through a number of further methods required for initigima the originating Java method
was called again as I/O functions suchpastin() require the JVM interaction. At this point
the loop started anew. The obvious result of this was a staekilow however without any
indication of its cause. While Cacao provides a very verboseigl®ption,-verbose:call

that prints a message upon each method’s beginning andisraption produces data in excess
of 2 GiB which is too much when not knowing what to look for. Tkey to finding the root
cause was using GDB’s backtrace option once Cacao had cawesstth overflow. Using the
available backtraceserbose:call could be set incrementally at methods lower in the stack
ie. methods that were called earlier. Setting this debug¢cewnanually resulted in only those
methods generating verbose output that were compiledtateswitch had been set and in turn
generating less output with more relevance. Incremensatfing the switch at earlier times
soon showed a certain sequence of the same methods beiongeadiind over again. Once the
method callingprintin() in its constructor had been identified solving this bug wag$y a
matter of turning off thelebug flag for classpath.
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6.2 Related work

Due to the perceived notion that only lower-level complexgraming languages such as C and
Fortran can exploit the full potential of the Cell/B.E. veriflé work has been done in order to
enable Java on Cell. The few known approaches will be disdusgée following.

6.2.1 CellVM

CellVM [NGFO06] takes an approach similar to one discussetiimthesis but was not further
pursued. A JVM, in this case JamVM, is modified to run on the SPhe final goal is to
provide a single system image so that a homogeneous view &iB Eelis provided. The ar-
chitecture built by CellVM consists of aGellVM Abstraction Layetthat receives and redirects
all requests accordingly to the different JVMs working i thackground. These include one
CoreVM based on JamVM on every SPU and tBkellVM on the PPE. The most common
bytecode instructions can be directly executed by the Coreéht only for more complex
function is the assistance of the ShellVM required. Thesstipanclude functions concerned
with access to system parts and object and array creatiothefentire heap in this architecture
resides in main memory CellVM implements a software-cotétbtache mechanism for the
SPUs so previously fetched data may be reused from the L& dgpssible.

The authors also provide a performance evaluation in wiielg lemonstrate cache hit rates
between right below 80% and up to 100%. Additionally an alniogar speed-up from using
1 up to 8 threads is observed.

6.2.2 SPU-accelerated parallel JIT-compilation of method s

A completely different approach is pursued by [HoyO7]. listmaster thesis project Cacao will
be accelerated not by using the SPUs for highly-paralletetken of methods but by using them
for parallel compilation of methods. The benefit of this aygmh is the fact that the speed-up
does not depend on the Java program executed and how edfgctiexploits the parallelism.
If this way is in fact fast enough methods can be compiledsipéigely in advance so that the
overhead of JIT-compilation should almost cease to exisfotfunately no further information
about the progress of this thesis could be obtained. Howevel be interesting to see for
which part the SPU’s provide more benefit, for execution offrads or for their compilation.
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6.3 Outlook

Unfortunately the outlook for Java on Cell/B.E. is currentirdhto determine. IBM as well as
other third-party vendors providing development tools tiacheworks for Cell/B.E. focus their
current efforts on mostly C/C++ based solutions. As thesetdirthe most important languages
in the HPC sector this direction is understandable. Evenghdava still cannot quite live up
to C/C++'s performance level there is a reason why there is adalige movement behind it.
So if Cell/B.E. may not be the right choice to compete in the HBGa it could still be used to
accelerate computationally intensive Java applicatioes sis financial ones or other business
software.

For the future development of Java on Cell/B.E. many diffedirgctions are suggested by this
thesis. Apart from the suggested implementation variatipresented in chapter 4 that have
not been realized yet a number of further-reaching optitidra may be feasible which will be
discussed in the next subsection.

6.3.1 Optimizations
Auto-vectorization

A rather obvious yet highly complex optimization is autategization which means the au-
tomatic generation of SIMD code from the scalar code pravid@otential areas for this op-
timization can be found mostly in loop unrolling. If the bod§ the loop performs work on
arrays multiple iterations may be replaced with a few SIMBtiactions. While SIMD ex-
ploitation is essential to fully utilize the power of the SRk is a non-trivial task with lots of
restrictions and pitfalls to observe. Even with traditibalaead-of-time compilers such as GCC
which can spend a lot more time inspecting the structure ataldbependencies of the code the
auto-vectorization is still a work in progrgssAuto-vectorizing Java code is especially prob-
lematic since code that may throw exceptions cannot be gthand each access to an array
may throw an out-of-bounds exception that occurs whengrioraccess an element outside the
bounds of the array.

Ihttp://gcc.gnu.org/projects/tree-ssalvectorizatioml
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Automatic offloading

A JIT compiler’s ability to optimize methods at runtime camudsed to further advantage. Once
the JVM identifies a method as being numerically intensivealy recompile the method for
execution on the SPU. Methods that qualify for this optim@ashould additionally require
only little external data from other methods and run longugtoto compensate for the over-
head of executing a method on the SPU. A simple way to meakareumerical intensity of
a method may be just to count the number of arithmetic bytesa@hd weigh them against
other instructions. This optimization would be especiéineficial in combination with auto-
vectorization.

Extending the GC

As discussed several times before for example in sectiod 4&vBen references to objects in
the main memory are used on the SPU this requires an exteoisiba GC. In this case it also

has to include the various places where the SPU may storetabjerences in its calculations
whether an object is still reachable. As long as the refeaemneside on the stack in the LS the
problem is fairly easy as the PPU and thus the GC has direesac¢o the LS. However as parts
of the Java stack for an SPU method may be mapped to SPU redlsteobject references may
also reside there while still being valid. Accessing the SBglsters from the PPU requires
saving the current SPU context and loading a new programwitiits out the registers to main

memory. This step is prohibitively performance-expensive

However, a more efficient solution can be based on the fattltbd&PU can cause interrupts on
the SPU as described in [IBM07a] chapter 882E EventsWhen the SPU has been configured
to receive interrupts it will automatically branch to LS aglss 0 and execute the code there
which may be a user-defined interrupt handler. Used in catijpm with the GC the GC could
always cause an interrupt on the SPU whenever it is run. Tteerupt handler which has direct
access to the SPU registers may write out their values to mamory from where they could
be used by the GC. Once the GC has finished work the interrumtidrahas to rebuilt the
execution state of the SPU thread before the interrupt andhem return back to where it was
called from.
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6.4 Conclusion

Java on Cell/B.E. provides an interesting combination of @éevant modern-day technologies.
The multi-threaded nature of both show great potential foorabined work and the additional
layer of the JVM allows hiding the heterogeneous architectf the Cell/B.E. so that Java
programmers do not have to adjust considerably to thisqoltatf

The work done in this thesis has shown that it is indeed plestilvun JIT-compiled code on the
SPUs and transparently access objects across the diffemmbries. The Java programs that
can be run so far are very limited and do not run efficientlyweeer, a significant number of
optimizations has been discussed which show good potdatiperformance increases. While
Java on Cell/B.E. will certainly not provide performance ol with the programming lan-
guages currently supported on Cell/B.E. such as C and C++ eviegla-gigit speed-up for
suitable programs over traditional JVMs would mean a vdkiadsult.

Unfortunately no JVM except for the other related work itelieed has been enabled to run
on a heterogeneous architecture such as the CBEA. Providsgubport requires a number of
major modifications most of which were too time-expensiveaa@ompleted during the limited

time available for this thesis. This also means that no cehmasive evaluation or estimation
of the performance of Java on Cell/B.E. could be conducted.

Further work on this topic is required and most likely rewiagdand this paper gives enough
directions which may be pursued in the future.

6.5 Appendix

6.5.1 Tools

Perl script to convert the SPU ISA to Cacao codegen macros

#!/usr/bin/perl —w
open (ISA, "SPU.ISA.txt");
$i = 0;
@lines =<ISA>;
while ($line = $lines[$i++]) {
if ($line ="
I7\'s=((0[1) (O[1]\'s)+)\s=(((1\d+) [([SRCI[ABCT]) [(\/{3}) [C)\s+(([SRCI[ABCT]) [(\/{3}) [(\s*))+)<
N Ao
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$opcode = $1;

@args =split (/\s+/, $4);

$opcode ="s/\s//g;

$opname =uc((split (/\s+/, $lines[$i—3]))[0]);

$opcode =unpack ("N”, pack(”"B32", substr ("0” x 32 . $opcode, —32)));
$num = scalar (@args) ;

unless ($line =" /\//) {

next ;
}
if ($args[0] =" /1(\d+)/) {
$imm = $1;
shift (@args) ;
$num-—;
$regsil $regs2 dc(join(",”, @args));

$regsl ="s/\/{3}//g;
$regs2 ="s/\/{3}/0/g;
print substr ("#define M_$opname(imm, $regsl)” . " " x 40, 0, 40) .

"M_OP${num} IMM$ {imm} ($opcode ,imm, $regs2\n”;

}

else {
$regsl = $regs2 dHc(join(’,’, @args));
$regsl ="s/\/{3},?//g;
$regs2 ="s/\/{3}/0/g;
print substr ("#define M_$opname($regsl)” . " " x 40, 0, 40) . "MOP$num($opcode, $regs2¢-
m™

}

close (ISA);

Listing 6.1: Perl script to help convert the SPU ISA

6.5.2 Trademarks

» Java and all Java-based trademarks are trademarks of Suogystems, Inc.
* PS3 and PLAYSTATION are registered trademarks of Sony Caengntertainment Inc

» Cell Broadband Engine and Cell/B.E. are trademarks of Sony Ctanjguntertainment
Inc.

» PowerPC is a trademark of IBM Corp.
* XDR is a trademark of Rambus Inc.

» All other trade names are the service marks, trademarksgastered trademarks of their
respective owners

6.5.3 Glossary
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Term Meaning

ABI Application Binary Interface, defines assembler-levelriiaige in-
cluding stack frame layout and dedicated registers

API Application Programming Interface, defines high-levelrsewcode
interfaces

Bytecode The intermediate machine-independent language used hy Jav

CBEA Cell Broadband Engine Architecture, the architectural didimion
which implementations will be based

Cell/B.E. Cell Broadband Engine, the first implementation of th€ BEA

CESOF CBEA Embedded SPE Object Format, the object format for em
ding —SPU programs withir~PPU programs

CISC Complex Instruction Set Computer, a computing architectoas
supports complex and powerful instructions

Doubleword Defined as a 64-bit type or-Cell/B.E.

EIB Element Interconnect Bus, the bus connecting the differemipo-
nents of the-CBEA

ELF Executable and Linkable Format, the common file format fa-e€
cutables used in Linux and many variations of Unix

Field In Java a data member of a class, unlike a method member

GC Garbage Collector, responsible for freeing unused heapespac

GCC The Gnu Compiler Collection, a number of different compilens-g
vided by the GNU project

GCJ The Gnu Compiler for Java, an ahead-of-time compiler that
compile Java source code to native machine code

GiB Gibibyte, 1024—MiB

Halfword Defined as a 16-bit type on Cell/B.E.

HPC High-Performance Computing

IEEE 754 IEEE standard, defines floating-point calculations and s¢ics

JDK Java Development Kit, consists ofaJRE and additional developgt
tools such as a Java compiler

JIT Just-in-time compiler, dynamically compiles methods tochiae
code when they are actually called

JRE Java Runtime Environment, consists of a JVM and the comg
class libraries, allows running Java programs

JVM Java Virtual Machine, the platform for executing Java bytec

Continued on the next page
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Term Meaning

KiB Kibibyte, 1024 bytes

libspe2 The runtime management library for managing the SPUs

LS Local Store, the small memory directly accessible by-th&PU

Member In Java all fields and methods of a class

MiB Mibibyte, 1024—KiB

MFC Memory Flow Controller, autonomous unit that transfers daga
tween—LS and main memory

PPE PowerPC Processing Unit, consistsePPU, L1 cache and-PPSS

PPSS PowerPC Processor Storage Subsystem, includes-tRBU L2
cache and a Bus Interface Unit

PPU PowerPC Processing Element, the actual processing core

Procedure Vector

In Cacao terms the entrypoint to a method and the base for the
segment

da

Quadword A 128-bit type, containing four (quad) 32-bitwords

RISC Reduced Instruction Set Computer, a computing architechat
supports only simple and easy to decode instructions

RMI Remote Method Invocation, the Java standard for messagm@ass
in distributed systems

SIMD Single-Instruction-Multiple-Data, class of assemblestinctions
which can work on multiple data at once

SPE Synergistic Processing Unit, consists-eMFC, —LS and—SPU

SPU Synergistic Processing Element, the actual processirgy cor

STI Sony, Toshiba and IBM, the consortium that developed-#@EBEA

Word Defined as a 32-Bit type or:Cell/B.E.

XDR Extreme Data Rate memory, the kind of memory used for the 1

memory of the—Cell/B.E.

nain
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