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Abstract

With Java becoming an increasingly important language in the HPC sector and the
Cell Broadband Engine (Cell/B.E.) achieving real-life performance an order of magnitude
higher than preceding computer generations coupling these two components could provide
both the Java world and the Cell ecosystem with interesting opportunities. Proper use of
the Cell/B.E.’s specialized Synergistic Processing Units (SPU) is the key to high perfor-
mance results. Therefore a special approach to exploit their full poweris necessary which
must also pay attention to the limited computing environment they provide. The solution
presented in this thesis consists of running a Java Virtual Machine (JVM) on the Cell/B.E.’s
general purpose PowerPC Processing Unit (PPU). The JVM is extended to generate and ex-
ecute native machine code for the SPUs at runtime thus requiring only little space in their
limited local store memory while promising a high performance.
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1 Introduction

The structure of this thesis is as follows: In section 1 the two main components making up the

project, Cell/B.E. and Java will be introduced and examined. Based on some common prop-

erties they provide the motivation for this project will be explained. In section 2 a number of

different concepts for the realization are discussed and a conclusion is drawn on which concept

to base further work. An existing implementation of a JVM which is suitable for the concept

is also introduced. In section 3 the architecture of the chosen JVM is discussed as well as the

design for Java on Cell/B.E. and the resulting steps for the implementation. Section 4 then

presents a number of possible implementation variations for these steps along with potential

issues and their solutions. In section 5 the resulting prototype implementation is evaluated re-

garding capabilities and performance and some recommendations concerning the programing

model are given. Section 6 concludes this thesis and in it an outlook is given for future devel-

opment in this area as well as a comparison with other relatedprojects. Finally in this section a

conclusion and review of the work is performed.

As explained above in this section both Cell/B.E. and Java willbe introduced including an

overview over their history, the motivation behind their creation and the respective design goals.

As they share a number of interesting capabilities these will be further examined and it will be

explained how the motivation for this project is derived from them.

1.1 The Cell Processor

1.1.1 Motivation

With Moore’s Law still holding up at the beginning of the 21stcentury the trend might be com-

ing to a halt. As modern microprocessors would just be accelerated by increasing the clock

frequency this would also result in an increased current leakage as well as an increase in the
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1.1 The Cell Processor

generated heat. Additionally memory bandwidth was unable to catch up with the CPU fre-

quency thus resulting in stalls of the CPU when waiting for data from the main memory. To

circumvent the increase of clock frequencies as a way to increase computational speed micro-

processor developers were increasingly employing multi-core designs where multiple processor

cores are located on one chip. This way the chip can theoretically achieve the same computa-

tional speed at a lower frequency and thus with less heat and current leakage. However under

most situations it is difficult to use several general purpose cores to their full capacity hence

wasting energy and space on the chip. A better solution was seen in the coupling of a general

purpose core which runs the operating system with several specialized stripped-down cores to

offload computationally intensive tasks. This design has been realized in the Cell Broadband

Engine Architecture (CBEA) [IBM06].

Cell/B.E. was originally thought up and jointly developed around 2001 by Sony, Toshiba and

IBM (STI) as the basis for Sony’s next generation of PlayStation gaming consoles, the PlaySta-

tion 3. Its planned use would outline the rough requirementsfor the CPU which are explained

in the following.

Provide 33 times the performance of the PlayStation 2

This huge leap in performance would require a novel design approach, simply increasing the

clock frequency was not expected to yield the desired performance. In the end the PlayStation

3 would achieve around 33 times the performance of the PlayStation 2 within a development

time of 6 years thus far outperforming Moore’s Law.

High performance in mathematical (physics, graphics) calcula tions

The goal was to achieve a high performance with linear algorithms at the expense of technolo-

gies such as extensive branch prediction and out-of-order execution commonly found in general

purpose processors. This goal also favors a single instruction, multiple data (SIMD) approach

in which one instruction works with multiple data in parallel. This technique is commonly seen

in vector processors but lately also in PCs with multimedia extensions such as Intel’s MMX and

SSE or AMD’s 3DNow!
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1 Introduction

High single-precision floating-point performance

During design it was decided that a high single-precision performance is sufficient for a gaming

console. This would allow to spare some complexity that comes with a full double-precision

pipeline however would also result in a reduced double-precision performance.

Stream-like high-bandwidth applications

It was expected that the applications would employ algorithms which loop over vast amounts of

data coming in frequently at a high rate. This allows the architecture to emphasize bandwidth

over latency which is also reflected in its name, Cell BroadbandEngine. This means that while

data may take some time until it is available huge amounts canbe transmitted in a relatively

short time thus outweighing the latency once enough data is transmitted.

1.1.2 History

In 2001 IBM got together with Sony and Toshiba to achieve theirgoals and design a radical new

computing architecture. Sony wanted to build the CPU for their PlayStation 3, IBM had decades

of experience in microprocessor design while Toshiba wouldact as a high-volume manufacturer

of consumer devices and was also interested in producing Cell-based HDTV television sets.

STI set up its headquarter, the STI Design Center (STIDC) in Austin, Texas. Just on IBM’s side

around 400 Mill. $ were spent involving 11 IBM locations across the entire globe and several

hundred employees. The main design stage lasted from 2001 to2005 when the first prototypes

of Cell/B.E. were officially presented.

1.1.3 Implementation

The first publicly available implementation of the CBEA was featured in the PlayStation 3

and in the IBM Cell Blades which were released in 2006. Details concerning the components

making up Cell/B.E. are based on this first implementation which commonly runs at 3.2 GHz

and features one general purpose code and eight special purpose cores. An overview of this

implementation is given in [IBM]. Tests which are documentedin [Hac07] have shown that

even this first generation is able to achieve near-peak performance at 99.14% with specialized

workloads.
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1.1 The Cell Processor

Figure 1.1: Photo of the Cell die [IBM]

A practical comparison with other architectures is given in[WSO+05]. The table comparing

the raw numbers of some architectures is reproduced as Table1.1.

Cell X1E AMD64 IA64

Component 1 SPE All 8 SPEs (MSP) - -
Architecture SIMD Multicore SIMD Multichip Vector Superscalar VLIW
Clock (GHz) 3.2 3.2 1.13 2.2 1.4
DRAM (GB/s) 25.6 25.6 34 6.4 6.4
SP Gflop/s 25.6 204.8 36 8.8 5.6
DP Gflop/s 1.83 14.63 18 4.4 5.6
Local Store 256KB 2MB — — —
L2 Cache — 512KB 2MB 1MB 256KB
L3 Cache — — — — 3MB
Power (W) 3 ˜40 120 89 130
Year 2006 2006 2005 2004 2003

Table 1.1: Comparison of different processor types including Cell/B.E.

General Purpose Core

In order to maintain compatibility with legacy applications and have a good starting point an

existing processor architecture was to be used as the basis for the general purpose core. IBM’s

11



1 Introduction

PowerPC architecture [Wik07], which has a long tradition inthe field of high-performance

computing and has also proven to be a very extensible and versatile architecture was destined

to be this base. In the context of Cell/B.E. it is called the PowerPC Processing Unit (PPU).

It is a RISC core with two hardware threads, no out-of-order execution, two pipelines and

IBM’s SIMD-extension VMX. It may be operated in 32-bit or 64-bit mode depending on which

some semantics change. For example pointer sizes depend on the mode with 32-bit pointers

in 32-bit mode and likewise for 64-bit mode. Additionally the accessible size of the registers

changes in the same fashion. The register set provided consists of 32 integer, 32 floating-

point and 32 vector registers. As commonly the case with RISC architectures only certain

assembler instructions are able to access the memory while most instructions work only on

register contents. Additionally the assembler instructions are encoded in only a few different

formats with all instructions having the same fixed lengths.

When the PPU is coupled with a PowerPC Processor Storage Subsystem (PPSS) which in turn

contains an L2 cache and a bus interface it is called the PowerPC Processing Element (PPE).

Special Purpose Core

The special purpose core is called the Synergistic Processing Unit (SPU) and also features a

RISC instruction set with SIMD extensions, no out-of-order-execution and two pipelines. Due

to the design as a gaming console only single-precision calculations are fully pipelined in the

current implementation while double-precision is not and yields less performance. Theoreti-

cally each SPU can achieve a peak performance of 25.6 GFlops1 at single precision.

The SPU contains no cache however has a large register set of 128 128-bit wide unified registers

which can simultaneously store a number of integer or floating-point numbers as those are less

in size than 128 bit. Therefore those 128 bit or 16 byte are also referred to as a quadword as four

32-bit words can be fit into one quadword at once. Alternatively the register contents may also

be regarded as a number of 4-bit and up to 128-bit values, the exact layout and number of values

stored depending on the instruction that handles the register. When the register is handled with

a scalar instruction the leftmost word, bytes 0, 1, 2, and 3, are called the preferred slot. For

scalar types of up to 32-bit the data is stored right aligned in the preferred slot while larger data

types are stored left aligned in the entire register.

1This peak performance number is calculated as follows: a combined vector instruction such as multiply and
add performs two operations on four values which equals eight operations each cycle. Multiplied by a clock
frequency of 3.2 GHz this results in 25.6 GFlops
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1.1 The Cell Processor

Figure 1.2: Register layout in SPU registers according to [IBM07f]

The SIMD approach taken in the SPU is pervasive meaning that all registers can contain a

number of values of the same type while almost all instructions act on all values contained

within one register. For example the instructions to add tworegisters take three registers as

operands, two input and one output registers. Depending on the exact instruction used either

the eight 16-bit values or halfwords from the first input register are added two their respective

counterparts in the second input register and written to thecorrect slots in the output register or

the same may be done for the four 32-bit words or for the two 64-bit doublewords.

Figure 1.3: SIMD arithmetic

Currently the Cell/B.E. chip comes with 8 SPUs, each of them coupled with their own local

store (LS) memory of 256 KiB. The LS is the only memory directlyavailable to the SPU, all

other memories are only accessible from the SPU via special mechanisms. The LS has to store

instructions as well as data. It allows for a peak bandwidth of 51.6 GB/s. However for the

SPU loading from and storing to the LS is only possible with 16byte at once at 16-byte aligned

addresses. This is ensured by having all load and store instructions in the instruction set force

the four least significant bits of an address to zero resulting in a multiple of 16. Each load
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1 Introduction

and store instruction also loads or stores the contents of anentire 16-byte quadword register at

once.

Exchanging data with the main memory has to be done using explicit Direct Memory Address

(DMA) transfers. These transfers can be set up by the SPU or bythe PPU. They are then served

autonomously and asynchronously by a designated DMA controller called Memory Flow Con-

troller (MFC) which stores the requested data in LS or main memory. The maximum bandwidth

of DMA transfers is 25.6 GB/s.

The functional unit of SPU core, MFC and LS is called the Synergistic Processing Element

(SPE).

Figure 1.4: Block view of Cell/B.E.including bandwidth numbers [IBM]
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1.1 The Cell Processor

Memory Flow Controller

The MFC is responsible for transferring data between LS and main memory. Once it has been

instructed correctly it performs the transfers in a completely autonomous fashion in the back-

ground. Each core, PPU and SPUS, features a dedicated MFC that may transfer data both to

and from the other cores.

The DMA transfers performed by the MFCs are subject to a numberof restrictions

• Transfers of 1, 2, 4 or 8 byte must be naturally aligned whichmeans that both the source

and target address must be divisible by the size of the transfer. Additionally they must

share the same offset to the next lower 16-byte boundary.

• Transfers of a multiple of 16 byte up to 16 KiB must be alignedto a 16-byte boundary.

Maximum performance is reached when both addresses are aligned to 128 byte and the transfer

size is a multiple of 128 byte.

The MFC also supports so-called MFC lists but only on the SPU.Such a list is stored in the

LS and consists of a number elements that contain a main memory address, a transfer size and

a stall-and-notify bit which may be used to notify the SPU when a certain element in the list

has been reached that requires some preparation. The list may contain up to 2048 elements

and the restrictions for DMA transfers apply for list transfers as well. When passing this list’s

address to the SPU’s MFC it will autonomously retrieve the elements in that list and perform

the transfers. Depending on the instruction used the transfers may either load or store data from

or to the main memory. While the main memory addresses in the list may be non-contiguous

only one LS source or target address may be given so the area inthe LS is contiguous.

The MFC also provides facilities for atomic synchronization. These allow accessing and locking

an area of 128 byte in the main memory so no other unit will interfere until work on this area

has been completed. Also, locking this area may be used for synchronization so as to inform

other units that the locking unit is currently performing a certain work item.

Element Interconnect Bus

Connecting the PPU, SPUs, main memory and an external interface is a high speed ring bus,

the Element Interconnect Bus (EIB). In order to satisfy the high bandwidth requirements of
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1 Introduction

the Cell/B.E. it provides two lanes in each direction, totaling a bandwidth of 25.6 GB/s for all

connected devices.

Main Memory

The main memory is supplied by RamBus and features their Extreme Data Rate (XDR) tech-

nology and is connected to the EIB with a special Memory Interface Controller (MIC). It can

provide for a bandwidth of 25.6 GBit/s but has to be soldered tothe board. The first generation

of IBM’s Cell Blade came with just 1 GB of XDR main memory.

1.1.4 Applications

Due to the design of the CBEA a certain approach for running applications on and benefiting

from the performance of Cell/B.E. is recommended. The generalpurpose PPU with its full

instruction set is generally used to run the operating system and handle IO and networking

while the specialized SPUs will only be employed for certaincomputationally intensive tasks.

This approach usually requires careful analysis of the workload in question to determine which

parts may be executed on the SPU and how they can be parallelized.

With SDK3, the latest version of the SDK which will be furtherdescribed in the next section,

many different forms of cooperation between the SPUs and PPUare possible. To synchronize

the units a number of methods is available to them. The SPUs and PPU can send small messages

via so-called mailboxes and signals among themselves or access shared data structures in main

memory or in one of the SPUs’ LS via DMA transfers. The most straightforward approach is to

let the PPU create some SPU threads and execute an algorithm on them while controlling and

synchronizing the state of the SPUs. However it is also possible to just start up a number of

SPUs which can synchronize themselves. Additionally it is possible to exchange the program

code while leaving the data in place thus allowing to operateon one set of data with multiple

programs.

Due to the lack of a cache on the SPU most applications use partof the SPU’s LS to create

special buffers for DMA transfers and other regularly required data. Because of the high band-

width of the LS this approach can be tailored to the algorithm’s needs and delivers very high

performance. A popular approach is to set up a double-buffering scheme where a DMA transfer

is pulling data from the main memory into one buffer while theactual program is working on
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1.1 The Cell Processor

the data available in the other buffer. Once this step is complete buffers are switched. This

scheme is possible due to the autonomous nature of the DMA controller which allows the SPU

to keep executing code while data is being fetched from the main memory.

To summarize running programs on Cell/B.E. does not automatically result in a higher perfor-

mance as may be the case with traditional multi-core architectures. Yet Cell/B.E. provides a

great potential for specialized applications once they have been adapted to the unique architec-

ture.

1.1.5 Linux on Cell/B.E. and Cell SDK

The Open Source operating systemLinux2 has been extended by STI to be able to run on

Cell/B.E. and make use of the SPUs. IBM provides a complete Software Development Kit3

for developing SPU-accelerated applications on Linux. It contains a port of the Gnu Compiler

GCC4 which can compile C, C++, Ada and Fortran applications for the SPU, a run-time library

to manage SPU access (libspe2) [IBM07d], additions to the GnuDebugger (GDB)5 to debug

Cell/B.E. applications and a Cell/B.E. simulator which may be used on non-Cell/B.E.-hardware

to simulate such a system6. A special C library for embedded systems with a low memory

footprint, newlib7 is used to provide SPU programs with frequently required functionality. In

order to facilitate access to the SPU’s LS it can be memory-mapped into the PPU’s memory

thus allowing the PPU to read and write the LS as if it were ordinary memory, albeit at a lower

speed.

System calls from the SPU

System calls on the SPU such as opening files or printing to a terminal are handled using special

PPE-assisted-calls which instruct the PPU to service an SPU’s request. This mechanism is

based on the stop-and-signal functionality and works by theSPU issuing a special assembler

instruction calledstop . The only argument to this instruction is a 14 bit stopcode. Once this

command is executed the SPU is stopped and the PPU notified. Using the libspe2 runtime

2http://www.kernel.org
3http://www.bsc.es/projects/deepcomputing/linuxoncell/
4http://gcc.gnu.org/
5http://sourceware.org/gdb/
6IBM has also extended its proprietary XLC compiler family tobe able to compile code for the PPU and the SPU.

As they have not been used in this thesis they will not be mentioned further
7http://sourceware.org/newlib/
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management library applications can add individual callback functions for each stopcode. By

convention the stopcode values may range from 0×2100 to 0x21FF with the first 4 available

values being reserved for operating systems functions suchas IO operations.

. . .

arg  0

arg n

. . .

stop(stopcode)

opcode +  LS po in ter

next  inst ruct ion.

*po in te r

SPU

PPU

l ibspe2

1.  rece ive
    stop-and-signal
    + stopcode

cal lback
funct ion

3. fe tch
   arguments

2.cal l  according
   to stopcode   

4 .  p lace
    return
    value

6.  resume

5.  re tu rn

Figure 1.5: Stop-and-signal mechanism

The stop-and-signal notification is initially handled by a libspe2 function which depending on

the stopcode calls the appropriate callback. The callback functions are being passed the address

of the respective SPU’s LS in the memory map and the offset of the originatingstop instruc-

tion within the LS. Again by convention the next 4 bytes directly following thestop instruction

contain further data for the callback function. This data usually consists of an opcode designat-

ing the actually requested functionality within the set of functions provided by this callback as

well as a pointer to a block of arguments within the LS. Due to the SPU’s 16-byte alignment

restriction each argument is usually 16 byte large so that itmay be handled as four 4-byte or

two 8-byte elements.

Once the callback function on the PPU is done it optionally stores a return value directly in the

LS in place of the first argument in the argument block. Again,the callback function may place

up to 16 byte as a return value in varying granularities. Execution on the SPU is then resumed

with the instruction following the LS pointer.
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Linking SPU and PPU programs

In order to allow running an SPU program from a PPU program Linux on Cell/B.E. provides a

mechanism to embed the SPU part within a PPU program as described in [IBM07a] Chapter 14,

Objects, Executables and SPE Loading. For this mechanism the CBEA Embedded SPE Object

Format (CESOF) has been defined.

Both the SPU and the PPU toolchain produce ELF objects with disjoint address spaces. Using

the ppu-embedspu tool allows taking the SPU object file and wrapping it into an object file

suitable for linking with the PPU program. This object file provides only one symbol of the

type spe program handle t which can be used in the PPU program and then passed to the

appropriate libspe2 functions that load or run the associated SPU program.

1.2 Java

In its barely 15 years of existence Java has risen to become one of the most famous program-

ming languages as regularly shown by theTIOBE Programming Community Index8. A good

introduction to Java is given in [Ull07]. Some important aspects concerning its history and

design goals as well as its current state will be reproduced here.

1.2.1 History

The origins of Java trace back toProject Oakwhich was started in 1991. It was originally

envisioned to provide a virtual machine for cable TV set top boxes and other media devices and

enhance them with interactive functions. This virtual machine would act as an abstraction layer

and allow the code to run on a multitude of different platforms as long as an implementation

of the virtual machine was available. However this market did not prove very rewarding so a

change of directions was made towards the Internet. With thevirtual machine it was possible to

download small programs, so called applets, from the Internet and execute them in the browser.

This mechanism also maintained a high level of safety due to the virtual machine acting as an

intermediate layer between the applet and the computer’s resources. After the great success of

the applets Java was soon extended to provide functionalityfor stand-alone desktop programs

8http://www.tiobe.com/tpci.htm
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as well as server applications and now has become one of the most popular and widely spread

programing languages.

The fact that Java and its source were made available at no cost by Sun Microsystems also

contributed to the wide adoption of the Java platform. However since it was developed in a

closed-source non-free fashion the development of many free JVMs, free Java compilers and the

free class libraryGNU Classpathto escape thisJava Trapwas started. Beginning in November

2006 Sun started to publish the source code of their java compiler and the Hotspot virtual

machine under a free license which was soon followed by the majority of the class library.

1.2.2 Implementation

Java was originally designed with a number of goals in mind. While other programming lan-

guages have also fulfilled some of these goals before Java wasthe first to combine these leading

to its great success. Some of the most important aspects are listed here.

Portability

Java programs should support acompile once, run anywherepolicy. To achieve this goal a

machine-independent bytecode language was defined. A Java compiler could then compile Java

source code to bytecode which is interpreted by the JVM. Additionally Just-in-Time (JIT) com-

pilers may translate the bytecode at runtime into the machine code of the current architecture

the JVM runs on.

Object-Orientation with primitive types

To provide the best of both object-oriented and procedural languages Java supports both objects

as well as a few primitive types. Pure object-oriented languages, those without any primitive

types, such as Smalltalk had proven too be to restricting performance-wise even though they

provided a clearer view on the program.

Along with object-orientation Java also implements accesspermissions. Classes and class mem-

bers may be qualified with further keywords as shown in table 1.2 which define who may access

a certain class or member.
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private default protected public

class - package access - no restrictions
member same object private + same packagedefault+ subclasses no restrictions

Table 1.2: Overview of Java access permissions

Security

Due to the virtual machine as an intermediate layer between the Java program and the host

system it is possible to restrict usage of the host system’s resources. Fine-grained security

permissions can be defined depending on the origin of the Javaprogram. This allows to fetch

bytecode via network from untrusted sources and safely execute it in the virtual machine. The

most well-known case for this are the Java applets, small programs which are embedded into

a website and loaded from the potentially malicious server hosting the website. Additionally

a JVM also includes a bytecode verifier which checks all bytecode instructions before their

execution to ensure that they do not execute potentially harmful instructions such as illegal

branches and access to private data.

Stack based

The Java bytecode was designed to simulate a stack-based architecture. Since no assumption

about the available register set or stack on the target architecture is done this allows the JVM to

perform appropriate machine-dependent optimizations. For example CISC architectures such as

x86 commonly provide only a few registers while RISC architectures such as PowerPC usually

come with a larger register set. Depending on this the JVM maytry to keep more or less stack

elements in registers.

Multi-Threaded

Modern computer systems ranging from mobile devices over desktops to servers almost always

have to perform multiple tasks concurrently. In order to accommodate this fact the Java platform

supports multi-threading at the language, the library and the JVM level. This means that the

language provides low-level instructions to control multi-threading, the library contains higher-

level methods and the JVM must also support multi-threadingusually mapping Java threads to

native operating system threads.
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Automatic memory management

As opposed to C++ the memory management in Java is automatic. This means that the required

space on the heap for an object is allocated and released automatically. The allocation is handled

transparently by the JVM while the release is performed by a garbage collector (GC). The GC

is able to independently determine which objects are no longer in use and can release the space

they require.

1.2.3 Multi-threading in Java

As explained multi-threading was one of the design foundations of Java. Therefore the required

mechanisms for thread-safety reach through every layer of the Java platform from the language

over the bytecode to the JVM. Still, the usage is kept simple with only a few additional con-

structs. While each thread has its own distinct stack they allshare the same heap which is the

main requirement for thread-safety.

The basic component is the object lock or monitor. Every object and every class provides such

a monitor that can be only acquired by one thread at a time. Other threads trying to acquire the

same monitor will stall until the monitor has been released by the thread holding it currently.

The monitor is actually implemented as a counter where a value of 0 means that the lock is

free. Acquiring the monitor increases the count by one, releasing it decrements it by one.

The monitor is never accessed directly but only through thesynchronized keyword. When

encountering this keyword the Java compiler will automatically generate the correct bytecode

sequence for acquiring a particular lock.synchronized can be used in two situations which

will be explained followed by an overview of the higher-level mechanisms Java provides for

thread coordination.

Synchronized functions

Any Java method except for the constructor can be qualified with the keywordsynchronized .

This means that only one thread may enter any synchronized method of a particular object or

a static synchronized method of a class at a time. Since Java functions are reentrant, meaning

that they can call themselves, the thread owning the monitormay enter the method again thus

incrementing the count on the monitor. Once the method is left by returning or throwing an ex-

ception the counter is decremented again allowing other threads to enter synchronized methods
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of this object or class.

Synchronized statements

In order to allow more fine-grained concurrency only certainblocks may be protected by a

monitor. An arbitrary object reference, not necessarily the one of the object containing the

block, may be used as a monitor. Again, only one thread may enter any synchronized block or

method of the object or class used as the lock at a time.
1 . . .

2 synchronized ( someObject ) {

3 / * c r i t i c a l par t , o n l y one t h r e a d may e n t e r t h i s a t a t i m e * /

4 }

5 . . .

Listing 1.1: Example of a synchronized Java block

Volatile keyword

As a more lightweight replacement for synchronized statements the Java language also provides

thevolatile keyword. When applied to an instance or class field the JVM ensures that every

access to this field is performed in memory instead of the thread’s stack or registers. This allows

every thread to always see a consistent representation of the field. Additionally for architectures

that do not support 64-bit types natively 64-bit operationsmay require separate operations on

the two 32-bit parts of the type. In this casevolatile ensures that this operation is performed

atomically without interference by other threads. However, for more complex operations such

as incrementing a field usingvolatile on it does not guarantee consistency. Incrementing

actually requires two distinct accesses to the field, one to get and one to set its value, therefore

such operations are not protected byvolatile .

Thread coordination

A number of methods are provided by theObject class that allow for the coordination of

threads. Since all classes are derived fromObject these methods are available for every instance

of a class. Additionally the Thread class provides one important method.

1. wait(timeout) : release the object’s lock, enter the object’s waiting set,suspend execu-

tion of the current thread, wait for the optional timeout to expire
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2. notifyAll() : notify one or all threads from the object’s set that they maycontinue

execution, do the same aswait()

3. join() : Calling this method on an instance ofThread makes the current thread wait for

the other thread to finish.

Except forjoin() these methods make sense only when called inside of synchronized blocks or

methods. Callingwait() makes the current thread release the monitor allowing othermethods

to enter synchronized statements of the referenced object,suspend its execution and enter the

waiting set of the object. It is usually used when the thread cannot perform its desired action

inside a synchronized block for example because of missing data. notify() or notifyAll()

performs the same actions aswait() while also notifying other threads in the waiting set that

they may resume execution. This may be used to signify to other threads that there is now data

available.join() provides a synchronization barrier ensuring that all participating threads have

reached a certain point. When calling this method on an instance ofThread the current thread

waits for the called thread to finish and then resumes execution.

A typical example for this mechanism is theProducer-Consumer-Pattern. This programming

pattern consists of one shared buffer and two threads, both of which work on the same buffer.

The producer thread produces or stores values in the buffer and the consumer thread consumes

or removes them. The buffer provides two synchronized methods, one that removes and returns

a value from the buffer and one that stores a value. When started both threads try to enter

their respective method although only one may successfullydo so because of the synchronized

methods, the other thread has to wait. The consumer then checks if the buffer contains data

in which case it consumes it and callsnotify() to signal the producer that the buffer is now

empty and new data is required. If the buffer is empty the consumer can simply callwait() as

there is nothing to do. The producer in contrast checks if thebuffer is empty. If it is it produces

new data and callsnotify() to indicate to the consumer that it may fetch data. If the buffer is

not empty the consumer callswait() as there is nothing for it to do.

Summary

Using the available variations of thesynchronized keyword thread-safety in Java, that is mak-

ing sure objects and their data are always in a consistent state, can be ensured. In its simplest

form it is usually achieved by making fields of the object private so that they may not be di-

rectly accessed from outside the object. Synchronized public methods to get or set these fields

are provided. These methods may check the validity of the newvalue or other conditions. Once
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the method is done and the lock released the object is still ina defined state since no other

threads were able to interfere with this operation. If the fields of an object can be directly ac-

cessed by multiple threads inconsistencies may occur. Thiscomes from the well-known fact

that most operations such as incrementing a value are not atomic. Incrementing for example

requires fetching the current value first, incrementing it and then writing it back. If the sched-

uler switches to another thread after the first thread has just fetched the value the result will be

incorrect.

To summarize this means that Java may provide the right toolsto achieve thread-safety however

the responsibility to actually ensure this clearly lies with the Java programmer. This point is very

important to the concepts for shared heap access described in later chapters.

1.2.4 Performance

While these goals have helped Java to increase its outreach and appeal they came at the price

of a low performance due to the virtual machine interpretingthe bytecode at runtime. However

in recent years the addition of Just-in-Time (JIT) compilers has greatly decreased this problem

and pushed Java closer to a performance level competitive with C and C++. JIT compilers are

called at runtime and dynamically translate the Java bytecode to native machine code. Using

this approach allows maintaining the machine-independence of the compiled Java program.

Additionally the JIT compiler is able to take into account data collected at runtime such as

the flow of the program and external events and then reorganize the structure of the code for

example with method inlining and branch predictions. This way it is theoretically possible to

achieve a higher performance with a JIT compiler than with a traditional ahead-of-time compiler

as has been shown in [BDB99].

Around the year 2000 there was a huge interest surrounding Java for high-performance com-

puting, organizations such as Java Grande9 still document this. However in recent years this

trend has slowed down and corporate use of Java extended intothe domain of server systems

and large clusters.

9http://www.javagrande.org
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1.2.5 The Java platform

For the first years the Java programing language and the Java platform, which comprises among

others the JIT compiler, bytecode interpreter, garbage collector and class libraries, were per-

ceived as one unit. Due to the intermediate language in the form of bytecode however it is

possible to use any language to program for the Java platformas long as it can be compiled to

bytecode. In the last years many languages other than Java have been developed for the Java

platform. Most of these are dynamically typed and thus allowfor faster development cycles

than the statically typed Java. As a result of this Java has now expanded from providing one

language for many platforms to many languages for many platforms.

Due to this paradigm shift the distinction between the Java language and the Java platform

is emphasized lately. Furthermore different packages are provided for regular users and for

Java developers. For regular users Java is usually delivered in the form of a Java Runtime

Environment (JRE) consisting of a JVM and the compiled class libraries which is enough to

run Java programs. If other development tools such as a compiler and documentation generator

as well as the source code to the class libraries are added thebundle is referred to as Java

Development Kit (JDK).

1.3 Java on Cell Motivation

If it is possible to enable Java programs to employ Cell/B.E. for their calculations a whole new

world would open up for both Java and the Cell/B.E. Java programs could gain a performance

boost from using the Cell/B.E.’s SPUs while the CBEA could profit from the vast number of

Java programmers and applications already existing today and reach an even wider audience.

While Java and the CBEA share a number of attributes it currentlyis not possible to have Java

programs benefit from the raw computational power the Cell/B.E. provides. Some of these

attributes and other positive factors are discussed here.

1.3.1 Multi-threading

Multi-threading is an integral part of Java and firmly embedded into its core. Its usage spans

from desktop applications using different threads to update the user interface and act on external
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input to server programs using multiple threads to serve multiple requests. Similarly it is crucial

for Cell/B.E. programs to subdivide tasks so they can be executed in parallel on the SPUs.

1.3.2 High-performance computing

In recent years Java has become an increasingly important force in the High-performance com-

puter (HPC) sector thanks to huge improvements in JIT compilers and in its memory man-

agement. By now it is able to compete with C programs performance-wise while providing

a much higher level of abstraction for the programmer. The CBEAhas been designed from

the ground up to provide extreme performance. It has alreadybeen used in a number of HPC

projects, most notably the ongoingRoadrunnerproject10 designed to become the world’s fastest

computer with a performance of one petaflop in 2008.

1.3.3 Provide a homogeneous environment

As the JVM acts as an intermediate layer hiding any architectural differences this fact may

also be used to hide the heterogeneous nature of the CBEA from the Java programmer. MFC

transfers and shared access to data across different memories can be performed implicitly and

controlling the SPU threads may use the standard mechanismsavailable in Java. When using

one of the currently supported languages for Cell/B.E. such asC/C++, Ada and Fortran the

programmer has to take care of all this manually.

10http://www-03.ibm.com/press/us/en/pressrelease/20210.wss
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In this section a number of concepts to enable Java on Cell/B.E.will be presented and evaluated

along with the software components they require to be fulfilled. Based on this evaluation the

most promising concept will be further pursued and its base components will be introduced in

greater detail.

2.1 Concept

Due to the uniqueness of the CBEA three different approaches toenable Java seem viable. De-

pending on the approach chosen the architecture can be seen as either a distributed memory

or shared memory one. The goal is to extend the JVM in a way thathides the underlying ar-

chitecture and thus create what is essentially a distributed shared memory system (DSM) in

which the entire memory space is accessible transparently for all nodes. Such a JVM is com-

monly referred to as asingle system imageas it looks to the user like a single system. Further

information about DSM systems and their implementation in Java is given by [Fen01].

If the SPEs are seen as independent nodes with the LS as their dedicated memory and a dedi-

cated processing unit then the whole architecture can be regarded as a distributed memory one.

Communication between the nodes is performed by message passing, however with a low la-

tency and a high bandwidth compared to other distributed memory architectures. This is due to

the fact that the nodes are not connected by a network but instead reside on the same chip. The

message passing in this case would be implemented with mailbox messages and DMA trans-

fers. In the other case the SPU is seen as an auxiliary processing unit with the LS as its cache

and the main memory being the central storage area. With thismodel the CBEA is more closely

related to a shared memory multi-core architecture where all processing units can access the

entire memory space.
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2.1.1 JVM running inside SPU

A more or less complete JVM is ported to run on the SPU as shown in figure 2.1. This requires

the JVM to fit entirely into the 256 KiB memory available to theSPU while still leaving enough

space for both the actual Java program and its runtime data, the stack and the heap. Additionally

the class library has to be made available to the SPU. Due to its size, which is around 16 MiB

for GNU Classpath, a free class library, this requires a concept to swap the needed code in and

out of the LS as required. While the available memory does not seem much certain JVMs have

been designed to work on embedded devices with similar memory constraints.

This approach makes it possible to run both interpreted and JIT-compiled code or a mixture

thereof on the SPU. However it seems doubtful that a Java interpreter on the SPU is able to

achieve any significant performance as it has to do a lot of expensive branches and memory

lookups. A JIT compiler promises much higher performance however requires additional space

for the compiled code. Once a method has been compiled and executed on the SPU its machine

code can be swapped out to the main memory so only the currently needed functions have to be

kept in the LS. This also erases the time needed to compile a function on subsequent calls as it

is still available from the code cache in the main memory.

As the SPUs act as mostly independent nodes in this model a message passing scheme or a

technology such as remote method invocation (RMI), the Java standard for distributed Java sys-

tems, is required to allow them to cooperate. Other problemsof this domain such as distributed

garbage collection due to each SPUs’ local heap also apply.

2.1.2 Compile Java code to native SPU code

A second concept is based on the idea of using a compiler whichcan compile Java source code

into native machine code for the SPU ahead-of-time like a traditional compiler. This approach

promises a high performance due to the use of native code without the penalty of compilation

during runtime. It could also be extended to work in a similarfashion as the currently supported

languages for the Cell/B.E. For these, compilers are providedwhich can generate native code for

both the SPU and the PPU with additional runtime libraries tostart the compiled SPU program

from the PPU. The basic concept is depicted in figure 2.2. A Java compiler would also face

the same problems as the existing compilers which include synchronization between SPUs and

PPU and code size often being larger than the available LS size. This is especially problematic

for Java since dynamic libraries are not available on the SPUthus requiring to link the class
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assembly cache shared heapJIT compiler
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store assembly
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swap in / outorder compilation
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JVM JVM

Figure 2.1: Run an entire JVM on the SPU

libraries statically into the SPU program.

2.1.3 Use a JIT compiler to offloads functions to the SPU

In the third concept a host JVM will be run on the PPU which offloads computationally intensive

methods to the SPU. The PPU executes common functions and service the SPUs’ request to

central JVM infrastructure components such as the classloader. Employing the SPUs is done

by having the JVM’s JIT compiler generate native machine code for the SPU which can be

executed right away without additional performance penalties. The JVM can act as a central

synchronization point to exploit the multi-threading capabilities of Cell/B.E. As an additional

benefit the main memory can be used as a cache to store compiledfunctions and provide them

to the SPUs as needed. A mechanism to swap compiled code in andout of the SPUs LS has

to be developed. Furthermore objects on the heap have to be mutually shared and accessed

by all SPU and PPU threads. Thus the common problem of synchronized access to objects and

functions also has to be taken care of with the addition that objects might have to be temporarily

moved to an SPU’s LS to work on them. A rough overview of this system is shown in figure

2.3.
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Figure 2.2: Compile Java code to native SPU code

2.2 Feasibility study

Each of these three approaches comes with its own advantagesand disadvantages which deter-

mine its feasibility and will be discussed here.

1. As discussed before the first approach will be best fulfilled by a JVM which has been

designed for use in embedded systems. Due to the similarities in the SPU and the PPU

instruction set it is desirable to choose a JVM which alreadyprovides an interpreter or

JIT compiler for PowerPC. One example of this isJamVM1 which comes with a binary

size of around 160 KiB and includes a PowerPC interpreter. However due to their nature

interpreters commonly achieve only performance levels at least an order of magnitude

lower than those of JIT compilers as shown by the performancecomparisons on [Shu04].

Therefore this approach does not look very promising. Another free JVM which provides

a PowerPC JIT compiler isCacao2. It can be stripped down to a binary size of around 600

KiBs which is still too large for the SPU’s LS. Additionally the thread synchronization

overhead in this concept is larger. Either way this concept has many problems as ex-

plained above. As even the basic idea does not sound promising in terms of performance

this concept will not be further pursued.

2. The second concept is based onGCJ3, part of the Gnu compiler collection, which can

1http://jamvm.sourceforge.net/
2http://www.cacaojvm.org
3http://gcc.gnu.org/java/
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Figure 2.3: Use a JIT compiler to offload functions to the SPU

compile Java code into native machine code for many platforms. As both a frontend

for Java as well as a backend for the SPU, the respective GCC terms for the component

supporting a certain language and the one supporting a platform, already exist these two

have to be coupled together. With this it will be possible to compile a Java program into

native SPU machine code before runtime and execute it on the SPU. This however means

that the program is only executed on a single SPU, allowing multiple SPUs and the PPU

to cooperate requires additional work. In principle a GCJ forthe SPU should profit from

the large number of optimizations built into GCC and therefore in GCJ. However GCJ’s

performance is still sub-par [Shu04]. Additionally GCJ onlyconforms to the Java 1.1

standard.

3. As with the first approach a JVM with support for PowerPC provides a good starting

point. The only free JVMs with PowerPC JIT compilers still being actively developed

are Cacao andKaffe, however the Kaffe JIT compiler for PowerPC is broken as of this

writing. Cacao on the other hand has been developed from the ground up to support JIT

compilers for RISC processors and thus promises a high performance. Since no other

compilation technology so far could rival JIT compilers forthe Java platform this match

seems to be suitable. Additionally the possibilities of JITcompilers such as dynamic

optimizations provide interesting opportunities. These could for example be applied to
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determine how to partition workloads between the differentCell/B.E. cores or anticipate

data transfers based on previous and repeated occurrences.

Due to the reasons discussed the third approach promises themost potential. It will therefore

be further pursued in this thesis.

2.3 Components

Summarizing from the feasibility study two main componentswill make up Java on Cell. These

components will be briefly introduced in this section while the chosen JVM will be described

in greater detail in chapter 3.1.

2.3.1 Cacao

From the Cacao manual [Kea04]:

CACAO is a research Java virtual machine. From the beginning itwas designed

for 64 bit architectures and was based on a just-in-time compiler. To avoid two

different stack frame formats no interpreter is included. The compiler is so fast

that it does not matter to compile code which is just executedonce. One of the

aims of CACAO is to keep the system small and simple which makes CACAO

also well suited for embedded systems. It has been used to explore new just-in-

time compilation techniques, fast program analyses and improvements for run time

systems. Many of our developments turned out to be useful andhad been included

in the version of CACAO which we now distribute under the GNU general public

license.

The Cacao project was originally started in 1996 and is still being actively developed by a small

community following its release under the GPL in 2004. By now it features an interpreter and

has been extended to support a number of different RISC and CISC32- and 64-Bit platforms

including Alpha, x86 and x8664, ARM, PowerPC and MIPS with varying degrees of support

for the interpreter and the JIT compiler. The JIT compiler has proven to create efficient code

however still has room for improvements for certain workloads as the performance comparison

on [Gar07] shows. Cacao uses GNU Classpath for its class libraries.
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2.3.2 GNU Classpath

GNU Classpath was originally created as a response to the JavaTrap which describes the fact

that Sun provides its class libraries at no cost including access to the source code while forc-

ing a non-free license on developers. It was started in 1998 along with its own JVM which

was dropped as the project matured. Development was then focused on providing a stable base

of class libraries for other JVMs to use. This move was highlysuccessful and Classpath was

adopted by many free JVMs. With the release of the Sun JDK including the class libraries and

theHotSpotJVM under the free GPL v2 license starting in November 2006, the future develop-

ment of Classpath is unclear as Sun’s JDK provides a more complete implementation. Classpath

will most likely be used to fill in the gaps left in Sun’s JDK by the remaining proprietary parts.

One Open Source project to attempt this is IcedTea. As Classpath provides a prerequisite for

Cacao it requires no further work and thus will not appear in subsequent chapters.
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Due to the reasons described in section 2.2 the following work will be based on the Cacao

JVM and GNU Classpath. This section will give an overview of the Cacao architecture and

the resulting necessary steps to port Cacao to the Cell/B.E. It will begin with a rough overview

of the steps the JIT compiler performs and will describe the code generator that outputs the

assembler instructions in greater detail. Afterwards the GC and its integration in Cacao will

be explained followed by some mechanisms used in Cacao for lazy resolving and the different

schemes for calling a method. Finally some interesting points in the file hierarchy of the Cacao

source code will be pointed out.

3.1 Cacao architecture

The Cacao handbook gives a first rough overview of the Cacao architecture and especially

the JIT compiler whose port to Cell/B.E. will take the most manual work. It describes the

way classes and its members, fields, methods and nested classes, are loaded by the JVM when

requested by the Java program, how the required data structures are organized during runtime,

how methods are invoked and how exceptions are handled. It then goes on to describe the

architecture of the JIT compiler which will be summarized here. Further architectural parts will

be introduced as required.

3.1.1 Compiler steps

The Cacao handbook also describes the challenges of porting the JIT compiler to different plat-

forms, among them PowerPC in 32-Bit mode. Due to the fact that Cacao was originally started

with 64-Bit RISC processors in mind and had already been portedto the 32-Bit x86 architecture

most of the upcoming problems had already been solved. Two specific parts required further

work, 64-bit arithmetic and the calling conventions for native functions. 64-bit arithmetic is
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Figure 3.1: Control flow of the JIT compiler

performed by doing more or less the same operation on two 32-Bit registers. Calling native

functions required integrating the respective platform’sapplication binary interface (ABI). The

ABI for a platform which is the sum of an architecture and an operating system defines how

the available registers are to be used so as to ensure interoperability between code compiled by

different vendors and technologies such as a JIT compiler orinterpreter. This includes defining

the link register, the stack pointer register, registers containing arguments and return value, the

callee and caller saved and the temporary registers as well as the setup of the stack frame.

The final goal of the compiler is to translate the stack-basedJava bytecode into register-based

native machine code for the target machine. In order to avoidunnecessary register or memory

copy instructions the compilation is done in three stages and spends a considerable amount of

time analyzing the bytecode. These three steps will be described in the following.
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Basic block determination and internal representation

The smallest unit apart from individual bytecode instructions that the compiler works with is

thebasic blockwhich always consists of one or more bytecode instructions.During basic block

determination the compiler iterates over the respective method’s bytecode and evaluates for each

instruction if it marks the end of the current basic block. Basic block ends are most instructions

that represent a conditional branch such asif-else , switch , throwing an exception or simply

returning from a method. The instruction that marks the end of a basic block will not be included

in the current block but will be the first instruction in the next block. Method invocation however

does not necessarily end a basic block which in principle allows for method inlining, that is

including the instructions for a submethod in the calling function’s code. This allows saving the

overhead of a method call such as setting up the stack frame. This basic block determination is

performed to make the calculations of branch targets for theJIT compiler easier as each basic

block marks a potential branch target. Additionally the information about blocks can be used

for optimizations for example determining unused code or recompilation for frequently used

blocks.

Figure 3.2: Basic block layout example

In order to simplify the transition from one basic block to another the stack is mapped to the

registers with a fixed interface so the following basic blockcan always expect a certain stack

slot at a certain register. This approach was chosen by the Cacao developers after empirical

research on their part have shown that that the stack depth ata basic block boundary is rarely

greater than six. As most architectures provide more than six registers the stack can be entirely

mapped to registers.

At this stage the bytecode instructions are also translatedto an internal representation consisting

of one operator, two operands and a pointer to a stack structure. Certain bytecode instructions
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such as those folding the operand into the opcode eg.ICONST x which pushes a constant value

on the stack have to be split up into the generic operator and the respective operand to fit the

fixed representation. This approach allows for faster execution of the subsequent stages.

Stack determination and instruction combining

The next stage analyzes the used values and tracks where theyare loaded and where they are

consumed in order to avoid unnecessary copies and loads. Forthis purpose the stack is repre-

sented as a linked list allowing the compiler to look up if andwhere in the stack an operand

resides. Based on this information the register requirements of the basic block can be calcu-

lated.

In this stage some sequences of instructions are combined into internal instructions that can be

executed more efficiently by the hardware. One example is loading a constant that is a power

of two and then using it for multiplication or division. Thissequence is combined into one

instruction which can be efficiently handled at the machine code level with byte-shifting.

Register allocation

The register allocator determines for each instruction which registers its machine code trans-

lation may use for input and output. Due to the fact that Cacao was originally designed for

register-rich RISC architectures such as Alpha and MIPS a simple first-come-first-serve ap-

proach is used for the register allocation of the machine instructions. This means that registers

will be reserved as long as the value they contain is requiredafter which they can be allocated

again. If too many values have to be kept available old valuesmay be swapped out to the

stack.

3.1.2 Code generator

The actual code generator for the JIT compiler consists of two major parts, macros to output

the machine code translation of the bytecode of a method and functions and data structures to

manage the data segment. The two components will be described in this section.
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The code generator macros

The code generator macros are defined in the architecture-specific filecodegen.h . They mostly

consist of a mapping of assembler commands and very few higher level functions to macros

which in turn call functions or macros that output the correct binary sequence to encode the

requested instruction. As the PowerPC instruction set onlyhas a few different syntax forms for

its instructions the binary output macros as shown in 3.1 provide a concise view of the binary

instruction stream. The formats vary in the number of operands which can be registers or

immediate numbers. These binary output macros are used by further macros which are mapped

to the instruction set of the respective architecture. A sample of these macros is shown in 3.2.

These macros will eventually be used by the JIT compiler as itdecides for each bytecode how

to translate it to native machine code.

1 / * macros t o c r e a t e code ***************************************************** * /

2

3 # d e f i n e M OP3( opcode , y , oe , rc , d , a , b )\

4 do { \

5 * ( ( u4 * ) cd−>mcodept r ) = ( ( ( opcode )<< 26) | ( ( d ) << 21) | ( ( a ) << 16) | ( ( b ) << 11)←֓

| ( ( oe ) << 10) | ( ( y ) << 1) | ( r c ) ) ; \

6 cd−>mcodept r += 4 ; \

7 } whi le ( 0 )

8

9 # d e f i n e M OP3 GET A ( x ) ( ( ( x ) >> 16) & 0 x1f )

10 # d e f i n e M OP3 GET B ( x ) ( ( ( x ) >> 11) & 0 x1f )

11

12 # d e f i n e M OP4( x , y , rc , d , a , b , c )\

13 do { \

14 * ( ( u4 * ) cd−>mcodept r ) = ( ( ( x )<< 26) | ( ( d ) << 21) | ( ( a ) << 16) | ( ( b ) << 11) | ( ( ←֓

c ) << 6) | ( ( y ) << 1) | ( r c ) ) ; \

15 cd−>mcodept r += 4 ; \

16 } whi le ( 0 )

17

18 # d e f i n e M OP2IMM( x , d , a , i ) \

19 do { \

20 * ( ( u4 * ) cd−>mcodept r ) = ( ( ( x )<< 26) | ( ( d ) << 21) | ( ( a ) << 16) | ( ( i ) & 0 x f f f f ) ) ; ←֓

\

21 cd−>mcodept r += 4 ; \

22 } whi le ( 0 )

23

24 # d e f i n e M INSTR OP2 IMM D ( x ) ( ( ( x ) >> 21) & 0 x1f )

25 # d e f i n e M INSTR OP2 IMM A ( x ) ( ( ( x ) >> 16) & 0 x1f )

26 # d e f i n e M INSTR OP2 IMM I ( x ) ( ( x ) & 0 x f f f f )

Listing 3.1: PowerPC binary output macros for the JIT compiler

1 # d e f i n e M IADD( a , b , c ) M OP3(31 , 266 , 0 , 0 , c , a , b )

2 # d e f i n e M IADD IMM( a , b , c ) M OP2IMM(14 , c , a , b )

3 # d e f i n e M ADDC( a , b , c ) MOP3(31 , 10 , 0 , 0 , c , a , b )

4 # d e f i n e M ADDIC( a , b , c ) M OP2IMM(12 , c , a , b )

5 # d e f i n e M ADDICTST( a , b , c ) MOP2IMM(13 , c , a , b )

6 # d e f i n e M ADDE( a , b , c ) MOP3(31 , 138 , 0 , 0 , c , a , b )

39



3 Architecture and Design

7 # d e f i n e M ADDZE( a , b ) M OP3(31 , 202 , 0 , 0 , b , a , 0 )

8 # d e f i n e M ADDME( a , b ) M OP3(31 , 234 , 0 , 0 , b , a , 0 )

9 # d e f i n e M ISUB ( a , b , c ) MOP3(31 , 40 , 0 , 0 , c , b , a )

10 # d e f i n e M ISUBTST ( a , b , c ) MOP3(31 , 40 , 0 , 1 , c , b , a )

11 # d e f i n e M SUBC( a , b , c ) MOP3(31 , 8 , 0 , 0 , c , b , a )

12 # d e f i n e M SUBIC( a , b , c ) MOP2IMM( 8 , c , b , a )

13 # d e f i n e M SUBE( a , b , c ) MOP3(31 , 136 , 0 , 0 , c , b , a )

14 # d e f i n e M SUBZE( a , b ) MOP3(31 , 200 , 0 , 0 , b , a , 0 )

15 # d e f i n e M SUBME( a , b ) MOP3(31 , 232 , 0 , 0 , b , a , 0 )

Listing 3.2: PowerPC assembler instruction macros for the JIT compiler

The data segment

The data segment is handled as a linked list by the JIT compiler during compilation. It is used to

store values at JIT-compile time which may have to be retrieved during runtime of the method

such as locks, pointers to data structures as well as method and field references. Additionally

placeholders in the data segment may be created that are set at runtime. Each entry in the list

specifies a type such as integer, double, address, and a valueand links to the next entry. The list

can be modified with a number of functions that add a value of a certain size or find the location

of a previously added value. That way existing entries may bereused.

A number of data segment entries such as those designating the start of the exception table and

a pointer to an informational structure have to exist for each method. They are the first entries

to be added to the data segment and thus have a fixed offset. To simplify access to these entries

their offset is also given in precompiler definitions.

When adding an entry to the list an offset is returned. This offset points to the location of the

entry relative to the code entrypoint during runtime which also marks the beginning of the data

segment in the opposite direction of the code. The location of the code entrypoint is always

kept in a register called theprocedure vector, so each value can be accessed by loading the data

stored at the sum of the procedure vector and the offset.

Once compilation of the method’s code has been finished the JIT compiler iterates over the data

segment list and writes out the values in the list according to their storage size to the actual

memory location of the data segment. It starts with the first element in the list which is stored

right below the procedure vector and moves on towards lower addresses.

40



3.1 Cacao architecture

low address

...

dseg entry 1

dseg entry 0

procedure vector

method code

...

high address

Figure 3.3: Schematic view of the data segment

3.1.3 Garbage collector

Like many other free implementations of object-oriented programming languages Cacao uses

theBoehm-Demers-Weiser garbage collector(Boehm GC). As this GC has originally been de-

veloped as a replacement for the C/C++ memory management functions it may also be used for

automatic memory management for other programming languages when the actual implemen-

tation is done in C/C++. The Boehm GC implements amark-and-sweepalgorithm. This type

of GC performs its work in two stages:

1. Starting from theroots, in Cacao’s case the method stack which may partially reside in

registers, follow the chain of pointers and mark every object in this chain asalive

2. Free all memory belonging to objects not marked asalive

For the purpose of following the pointer chain the Boehm GC considers every bit pattern that

may represent a pointer as such. This is called aconservative GCas opposed to anexact GC

that can differentiate between arbitrary bit patterns and actual pointers. The Boehm GC uses a

stop-the-worldmechanism during garbage collection which means that when the GC is started

all threads are stopped. While this avoids any concurrency issues it marks a certain performance

barrier since no actual code can be executed in the program using the GC while it is running.

At the time of this writing the Cacao team is also working on their own implementation of an

exact GC, however it was not ready for productive use.
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3.1.4 Lazy resolving and compilation

Since Cacao is using a JIT compiler not all references to the members of a class are resolved at

compile time of a method but during runtime. This is called lazy resolving since the resolving

only takes place once the member is actually accessed. The mechanism for lazy resolving

in Cacao is based on a so-called patcher. Whenever an unresolved member is encountered

during compilation a temporary data structure containing only the essential information for

resolving that member is created. The instruction trying toaccess the member is replaced

with a stub method. Once this instruction is reached during runtime the inserted stub method

is called. The stub method then calls the patcher with the data structure and other required

information for resolving the member. Depending on the typeof member, such as a static

or virtual method or field, a more specialized patcher subfunction is called and the affected

references in the method’s code and data segment are adjusted. Execution then continues with

the resolved member and the original instruction at the point where it previously branched to

the patcher stub.

Figure 3.4: Patcher mechanism

Closely related to lazy resolving is also the way the JIT compiler is called. Only when a class

is first required during runtime it will be initialized by thelazy resolving mechanism and each

method it provides is filled with a stub compiler method. Thisstub method is only a few

instructions long and all it does is call a glue function which in turn calls the JIT compiler. The

stub method also contains a small data segment which provides only two entries, the branch
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target for the glue function and a reference to a structure which provides all required information

for compiling the method. Once the method is called for the first time the stub method is actually

executed. After successful compilation the JIT compiler adjusts the references to the method

so that subsequent calls will branch to the newly compiled code and finally it calls this code as

well.

3.1.5 Method calling

Several different ways for calling a method in Java are available each of which requires a certain

calling scheme as well as appropriate handling by the patcher.

Static methods

Static methods are those methods that are shared among everyinstance of a class and do not

belong to a particular object. This means that the code can always be found in a fixed location

once it has been compiled. The implementation for this calling scheme in Cacao consists of

adding a reference to the entrypoint to the data segment, loading the reference and branching

to it. The patcher therefore only has to adjust the data segment entry once the method has been

compiled.

Instance methods

Instance methods are object members so they are always associated with a currently existing

object. In order to resolve the address of an instance method’s code each object in Cacao is

associated with avirtual function table(vftbl) which contains pointers to all instance methods

of an object. Using the address of the object header and the index within the vftbl the code

address can be resolved. This requires two memory accesses,dereferencing the address of

the vftbl from the object header and then dereferencing the entrypoint from the vftbl. For

unresolved methods the index in the vftbl is not known so it isbeing set correctly by the patcher

once required.
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Interface methods

A Java class may implement any number of interfaces. An interface defines which methods

a class has to implement however does not provide an implementation of its own. Similar to

instance methods each object header in Cacao also provides aninterface table which contains

all interfaces the object’s class implements. In order to resolve the code address two offsets are

required. The first one is the index in the interface table, the second offset provides the index in

the function table of that interface. Resolving the code location and patching interface methods

is similar to instance methods only with two instead of one offset.

Builtin methods

A number of methods are implemented in C in the Cacao source code and are therefore called

builtin methods. They are mainly used for two cases:

1. Interactions between Java methods and the JVM such as instantiating new objects along

with the required memory management

2. Implementing translations for bytecode instructions that require a complex and long se-

quence of assembler instructions

The addresses to these methods are known at JIT-compile timeso the appropriate branch in-

structions do not have to be resolved at runtime and can be correctly generated right away. No

patching is required. Depending on the architecture some calling conventions from the ABI

have to observed, for PowerPC however the ABI used by Java methods and builtin methods is

the same thus requiring no additional work.

3.1.6 File hierarchy

A short overview of the file hierarchy used by the Cacao sourcesreveals mainly two interesting

points. The JIT compiler source directory contains an individual directory for each architecture

it supports which in turn contains another set of directories for each operating system supported

on that architecture. While the architecture directories contain the machine-dependent parts of

components such as the code generator and the register allocator the OS-specific directories

contain for example definitions from the ABI which may differ from OS to OS even on the

same architecture.
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3.2 Design decisions and steps for the port

As a conclusion from the overview of the Cacao architecture the port of Cacao to Cell/B.E.

will be based on the following design decisions and steps. The individual steps will be briefly

discussed along with potential issues that will have to be addressed.

3.2.1 Porting the JIT compiler to emit SPU code

In order to execute any methods at all on the SPU the code generator for the JIT compiler will

have to be ported to support the SPU instruction set. The PowerPC JIT compiler can be taken

as a base since the instruction sets share a certain similarity. They are both RISC-based and use

only a small number of different formats for the assembler instructions. Special care will have

to be taken with the 16-Byte aligned memory accesses of the SPU’s LS as well as efficiency of

the code which should be low on branches and make use of the SPU’s unique instructions.

3.2.2 Shared heap access

Due to the multi-threaded nature of both Java and the Cell/B.E.a solution will have to be

developed for shared access of objects on the heap from all PPU and SPU threads. This may

include the SPU accessing objects in the main memory, maintaining a local heap in the LS and

creating objects there as well as transferring entire objects between the different memories and

caching them for faster access. However, as Cacao implementsthe multi-threading capabilities

of Java some of these problems such as concurrent thread-safe access to objects have already

been solved when the Cell/B.E. is regarded as a shared-memory system. Still, in order to achieve

the desired functionality many changes to the Cacao architecture will be required as support for

multiple heaps has never been regarded in Cacao before.

Along with shared heap access also comes the problem of extending the GC. Depending on

the approach for shared heap access objects or object references may reside on both the PPU

and on the SPE including its registers and LS. Since the SPU’sLS can be mapped into the

PPU’s address space a GC running on the PPU can also access andclean a heap on the SPU at a

slightly decreased performance. It can also include objectpointers on the SPU in its calculations

of whether an object is still alive.
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3.2.3 Swap code in and out of the LS

As the LS is very limited in size it will most likely be required to keep only those compiled

methods in it that are needed currently or soon. The compiledcode of the other methods will

be cached in and made available from the main memory. A methodto swap code in and out of

the LS as required will have to be developed. A starting pointcould be provided by the SPU

Software Managed Cache Library [IBM07b] that is included in the Cell SDK 3.0. This library

allows the SPU to use parts of the LS as a cache for the main memory so that the developer does

not have to manually take care of the synchronization and transfer of the data. Additionally a

method’s code may be too large for the entire available spacein the LS requiring to split up the

code into multiple segments or not being able to execute thismethod on the SPU.

3.2.4 Selective execution on the SPU

Due to the SPU’s highly-specialized capabilities only those methods that can make use of its

functionality should be executed on it while most other methods should be run on the PPU.

In fact this applies for most of the methods from the class library, especially parts such as

the classloader and I/O functionality. That way the PPU would mostly service requests from

the SPUs that they cannot complete themselves. In order to achieve this separation it will be

required to mark methods for execution on the SPU. This couldbe done for example by giving

the method or class a special name or package or tag it with an annotation.

3.2.5 Communication and branching between SPUs and PPU

As only certain methods will be executed on the SPU it will be necessary to develop a concept

which allows branching from an SPU to a PPU method and vice versa. This requires passing

arguments between the methods which in turn means moving them between main memory and

LS. Additional facilities to support the multi-threading capabilities of Java including thread

coordination and shared synchronized object access have tobe provided. Since most of these

functions are realized by using mutexes in main memory they can be handled by atomic DMA

transfers.
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In order to fulfill the design decisions a number of differenttasks have to be performed for each

step. A more thorough discussion of these steps along with possible issues and a number of

feasible solutions will be given in this chapter. Not all solutions presented have actually been

realized in the prototype implementation. An overview of the implemented parts will be given

in the chapter 5 along with a review of what the prototype is capable of.

4.1 Build process and additional files

Besides changes to existing files or using existing files as a base a number of new files had to be

added in order to access the SPUs. Additionally the build process had to be altered to include

the newly added files.

4.1.1 Cell port

As a starting point in order to maintain the sources in a statethat can be compiled the PowerPC

port of the JIT compiler was simply duplicated and moved to a directory calledcell/ . Any

references to files from thepowerpc/ directory had to be adjusted to point tocell/ instead.

Furthermore a number of files in this port which will be explained in greater detail in section

4.2 were also duplicated to provide one copy for the PPU and one for the SPU.

4.1.2 C-code entrypoint for the SPU

In order to facilitate use of the SPUs a central entrypoint for them is developed in C from which

the first Java method on the SPU will be called. While the SPUs could be loaded with the
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first Java method they have to execute and then be set to run, this intermediate step greatly

eases development. The necessary steps for setting up and starting the SPU can be handled

by libspe2, all required C functions including builtin functions are automatically loaded to the

correct address in the LS and debugging statements such as printing out values can be easily

inserted.

The exact flow for starting up the SPU as shown in figure 4.1 begins with the PPU transfer-

ring the SPU binary to the SPU and then starting up the SPU. This binary includes all nec-

essary C and assembler functions. This is performed by first calling spe program load()

with the pointer to the SPU binary that is linked in with the PPU binary and then calling

spe context run() which starts the SPU.spe context run() accepts a number of argu-

ments which are passed on to themain() function of the SPU binary. Themain() function

initializes the software cache for storing code and then waits for a number of mailbox messages

from the PPU. The PPU currently sends these messages once it is ready to execute themain()

Java method so that this method is executed on the SPU. The individual messages contain the

starting address of the data segment in main memory, the combined size of the data segment

and the code and the offset to the beginning of the code. Once the SPU has received all three

parameters it retrieves the code and starts to execute the Java method. More details on this

process will be given in later sections.

Linked in with the C part is also an assembler part. It currently contains only a small number of

functions used to branch between Java methods, explained inmore detail in section 4.6.2.

4.1.3 Build process

Cacao is using theGNU Autotoolsfor its build process. This set of tools from the GNU project

allows the automatic creation of Makefiles for large projects by defining only a relatively small

number of build options and dependencies. Additionally it supports a portable build mech-

anism across multiple platforms. This includes automatic configuration of the build process

which checks for the available tools and libraries as well asusing the correct platform-specific

mechanism for dynamic linking.

Unfortunately the Autotools currently do not support the Cell/B.E. toolchain which in fact uses

two separate toolchains, one for the PPU and one for the SPU. The compiler to be used can

be passed to the configuration script however this compiler will be used for all files. For that

reason the commands to build, link and embed the SPU specific parts as described in section

1.1.5 were hardcoded in the specific Makefiles.
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PPU
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Startup of the JVM

Initialization of SPUCalling Java main

Initialize cache, wait

Notify SPU
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Figure 4.1: Startup of the SPU

Build script

In order to support building Java on Cell/B.E. on other systemson which the modified sources

are not available a build script is provided. This build script is packaged with a number of

patches and the unmodified Cacao sources. When it is run it automatically unpacks the Cacao

sources, copies the PowerPC port to the new Cell/B.E. port, applies the patches which contain

all modifications performed for this project and starts the automatic configuration for the build

process. The user may then build and run Java on Cell/B.E.

4.2 Porting the JIT compiler to emit SPU code

The majority of work with porting the JIT compiler was split between two of its components,

the register allocator and the code generator as these two parts are the most machine-dependent

ones. One of the biggest and most pervasive issues with porting the JIT compiler comes from

the fact that it is expected to compile code for only one type of processor and thus expects to use
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the same register set and instruction set for all methods. Based on this reasonable assumption

precompiler definitions are used in Cacao to conform to the ABI and other fixed items including

the number and size of registers available, dedicated registers like the stack pointer, pointer size

and stack slot size. As these definitions are handled at compile time this still allows for the

flexibility to build the JVM to generate code for different architectures however once it has

been compiled it supports only one type of architecture. Since extending Cacao with support

for Cell/B.E. required the ability to JIT-compile for two different types of processors a new

approach for this problem was needed.

Three possible solutions to this issue seemed realistic andhave also been discussed with the

Cacao development team:

1. Duplicate the precompiler definitions and machine-dependent functions for both the PPU

and the SPU, call the correct function for the target processor type of the currently com-

piling Java method

2. Replace the precompiler definitions with a conditional statement that returns the correct

value depending on the target processor type

3. Define a structure containing the machine dependent parameters and pass the correct

instance to the compiler stages thus adding an intermediatetarget-specific layer

Item two could quickly be ruled out since precompiler definitions should define exactly one

value. Item three seemed most promising since it provides great flexibility with little redun-

dancy however would require a major code rework. This is alsothe solution chosen by other

projects such as GDB that have also encountered the problem of precompiler definitions for

architecture-dependent parameters. Due to time constraints the first solution was chosen since

it requires the least effort however at the cost of redundantcode.

As explained above the main parts concerned by this change are the register allocator and the

code generator. However, as for the code generator it has to be duplicated and adapted for the

SPU anyway due to major changes from its PowerPC base. Therefore it will not contain much

redundant code in the end. The implemented changes for thesetwo components are described

in the following sections. As porting the code generator included a number of separate subtasks

their descriptions have also been split into additional subsections.
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4.2.1 Porting the register allocator

The precompiler definitions for the register allocator mostly consist of values from the ABI as

shown in 4.1. As the SPU ABI [IBM07e] provides 128 128-bit wide unified registers compared

to the 32 integer and 32 floating-point registers provided bythe PowerPC a modification of the

register allocator definitions for the SPU was required. Since the different register allocator

functions simply use the existing definitions both the functions and the definitions had to be

duplicated. With a duplicate set of functions and definitions the PPU functions use the PPU

definitions while the SPU functions use the SPU definitions. Depending on what processor

type a method is JIT-compiled for the respective version of afunction can then be called. To

differentiate from the PPU versions the SPU versions of the definitions and functions are simply

suffixed with SPU.

1 / * i n t e g e r r e g i s t e r s * /

2

3 # d e f i n e REG RESULT 3 / * t o d e l i v e r method r e s u l t s * /

4 # d e f i n e REG RESULT2 4 / * t o d e l i v e r long method r e s u l t s * /

5

6 # d e f i n e REG PV 13 / * p r o c e d u r e v e c t o r , must be p r o v i d e d by c a l l e r * /

7 # d e f i n e REGMETHODPTR 12 / * p o i n t e r t o t h e p l a c e from where t h e p r o c e d u r e * /

8 / * v e c t o r has been f e t c h e d * /

9 # d e f i n e REG ITMP1 11 / * t emporary r e g i s t e r * /

10

11 / * . . . * /

12

13 # d e f i n e REG SP 1 / * s t a c k p o i n t e r * /

14 # d e f i n e REG ZERO 0 / * a l m o s t a lways z e r o : o n l y i n a d d r e s s c a l c . * /

15

16 # d e f i n e REG A0 3 / * d e f i n e some argument r e g i s t e r s * /

17 # d e f i n e REG A1 4

18

19 / * . . . * /

20

21 # d e f i n e INT REG CNT 32 / * number o f i n t e g e r r e g i s t e r s * /

22 # d e f i n e INT SAV CNT 10 / * number o f i n t c a l l e e saved r e g i s t e r s * /

23 # d e f i n e INT ARG CNT 8 / * number o f i n t argument r e g i s t e r s * /

24 # d e f i n e INT TMP CNT 7 / * number o f i n t e g e r t emporary r e g i s t e r s * /

25 # d e f i n e INT RES CNT 7 / * number o f i n t e g e r r e s e r v e d r e g i s t e r s * /

26

27 / * . . . * /

28

29 / * ABI d e f i n e s *************************************************************** * /

30

31 # d e f i n e LA SIZE 8 / * l i n k a g e area s i z e * /

32 # d e f i n e LA SIZE ALIGNED 16 / * l i n k a g e area s i z e a l i g n e d t o 16−b y t e * /

33 # d e f i n e LA SIZE IN POINTERS LA SIZE / SIZEOFVOID P

34

35 # d e f i n e LA LR OFFSET 4 / * l i n k r e g i s t e r o f f s e t i n l i n k a g e area * /

Listing 4.1: PowerPC ABI definition for the JIT compiler
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Due to the first-come-first-serve approach of the register allocator it should profit from the vast

number of available SPU registers as values will only rarelyhave to be swapped out from the

registers to the stack.

4.2.2 Porting the code generator

As layed out in the introduction to this section the requiredsteps for porting the code generator

can be split into a number of relatively disconnected subtasks which will be discussed in the

following.

Supporting bytecode translations for the SPU

Supporting the correct bytecode translations for the SPU ismostly a manual and repetitive task

that involves going over all Java bytecode instructions andfinding the correct set of assembler

instructions to perform this operation on the SPU. Three different parts have to be implemented

for this as explained in section 3.1.2:

1. The macros to support the different assembler instruction formats

2. The macros that map the actual assembler instruction to the right instruction format

3. Appropriate machine code translations for the bytecode instructions

Using the SPU Instruction Set Architecture (ISA) [IBM07f] step one was easy to perform es-

pecially since the SPU instruction formats are very similarto those used on the PowerPC. This

way the PowerPC binary output macros as presented in listing3.1 could be used as a base with

only few modifications.

Step two could be greatly simplified and automated. Using thetool pdftotext the SPU ISA

could be converted to a flat text file and subsequently parsed using a Perl script which is

reprinted in 6.1. This script correctly outputs most of the required assembler macros except

for some special cases with unusual syntax such as branch hints which have to be added or

corrected manually.

As for the third step, translating the bytecode instructionto assembler instructions, the easiest

way to find out an appropriate translation was to look at how the SPU-GCC translates an in-

struction. If applicable a shortC-program that performs theC-pendant of the bytecode instruc-
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tion in question was written and compiled and the resulting assembler code examined using

spu-objdump . This tool is used to disassemble a binary file and print out the raw contents

of the file along with the assembler instructions encoded. The relevant assembler instructions

could then be incorporated into the code generator by inserting the corresponding assembler

macros.

This approach is especially useful for instructions for which no equivalent single or small num-

ber of assembler instruction exists. An example for this is division1. For these the compiler has

to generate a rather long stream of assembler instructions which would be hard to figure out

from the ISA alone.

Builtin functions

As explained in section 3.1.5 builtin functions may be used to implement bytecode instructions

that are too complex to realize in the code generator due to the long sequence of assembler

instructions their translation requires. A good example for this on the SPU is the aforemen-

tioned division especially with 64-bit values. In fact according to the SPU-GCC the instruction

sequence for double-precision floating-point division consists of 175 instructions not counting

subfunctions called in the process.

Calling builtin functions comes with the overhead of branching from Java code to C code. This

includes tasks such as setting up the stack frame according to the ABI and copying the operands

to the argument registers while the called function might have to save additional registers in

order to restore them when returning. These tasks would not be required if the appropriate in-

structions were generated directly by the code generator. However, especially in the case of the

discussed 64-bit instructions using builtin functions greatly eases porting the code generator.

In order to efficiently use builtin functions on the SPU it hasto be ensured that they are directly

available in the SPU’s LS. This can be done by appropriately linking them to the SPU binary

that provides the entrypoint for Cacao on the SPU.

IEEE 754 compliance

Since Java 2 the keywordstrictfp has been added to the language specification as discussed in

[LY99] chapter 2.18,FP-strict Expressions. It can be applied to classes, interfaces and methods.

1On the assembler level division is performed by multiplyingwith the reciprocal value
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When encountering this keyword the JVM is forced to perform all floating-point calculations

in this part under strict IEEE 754 conformance meaning that the resulting values must match

exactly those expected by following the IEEE 754 standard.

The IEEE 754 standard [IEE85] defines how computer architectures have to handle floating-

point calculations. This includes the different precisions available, 32 bit for single-precision

and 64 bit for double-precision, rounding, handling of special values such as infinity and not-

a-number (NaN) and the binary representations of ordinary and special values. It also defines

how and when floating-point exceptions are thrown when some of these values and special

cases such as underflow are encountered during a calculation. In addition to the standard-

precision formats IEEE 754 also describes optional extended-precision formats which define

the minimum width of data types with 43 bit for single- and 79 bit for double-precision. The

exact size is implementation-dependent.

When thestrictfp keyword is omitted the JVM may use whatever floating-point support

the current architecture provides. In many cases such as forx86 this includes the extended-

precision formats. Since these formats are not supported byall architectures and vary between

implementations omitting the keyword may result in the sameprogram yielding different re-

sults on different architectures. Regardless of the keywordhowever, catching floating-point

exceptions is not supported by the Java language.

Since all compliant JVMs have to implement thestrictfp keyword this is also true for Cacao.

While both the PPU and the SPU support floating-point numbers with 32 bits for single- and

64 bits for double-precision only the PPU fully conforms to the IEEE 754 standard. As ex-

plained in [IBM07a] chapter 3.1.4,Floating-Point supporton the SPU the range of normalized

numbers is extended compared to IEEE 754 at the expense of certain special cases that cannot

be represented according to the standard. When a calculationyields a result not conforming

to the standard a flag in a special floating-point status register calledDIFF is set indicating a

deviation.

Using this flag implementing the IEEE 754 standard as required by Java is possible. Cacao has

to be extended so that after everystrictfp calculation on the SPU the DIFF flag is checked.

When a non-conforming result is encountered two ways to rectify this are possible.

1. The calculation is repeated on the PPU which supports the full IEEE 754 standard. The

easiest way to do this is by issuing a stop-and-signal notification and pass the operands

and the operator to the PPU which performs the calculations and returns the accurate

result.
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2. The correct IEEE 754 floating-point semantics are emulated in software on the SPU. This

requires developing builtin functions that manually work on the bit patterns provided by

the operands according to the standard.

While both these workarounds will induce a performance hit non-IEEE 754 compliant results

should only occur for rare corner cases and are only relevantwith strictfp calculations mak-

ing this workaround tolerable.

Enabling 16-byte stack and data segment slots

As discussed in section 1.1.3 the SPU can only load and store an entire quadword at a 16-byte

aligned address at a time. A number of methods to account for this fact in relation to the stack

and the data segment will be discussed here.

The SPU instruction set provides special commands to work around the 16-byte alignment re-

strictions. For storing data to unaligned addresses a special bitmask can be generated based on

the offset of the target address to the next lower 16-byte boundary by the family ofGenerate

Controls for{Half,Double}Word Insertioninstructions. The only requirement is natural align-

ment of the address meaning that for example a 4-byte value must be stored to a 4-byte address.

The data to be stored is loaded to the preferred slot of one register while the 16-byte aligned

quadword surrounding the target address is loaded into another register. TheShuffle Bytes

instruction then picks values from one of the two data registers according to the bitmask and

places them in the appropriate slot of the target register. The target register’s contents can then

be written back to memory. For reading data the surrounding quadword is also loaded entirely

into a register. A shift count is calculated based on the 16-byte offset of the actually requested

data within the quadword. Using this count the contents of the register are then shifted to the

left so that the requested data is moved to the preferred slotfor the data type. This mechanism

is shown in figure 4.2.

Another approach is to simply align all data to 16-byte borders regardless of their actual data

size and store them within this quadword the same way they arealso stored in a register. This

means that they can be immediately stored and loaded back into a register without any further

operation. This is the solution used by the SPU-GCC for the stack as well as for the data segment

and also documented in the SPU ABI which specifies that the stack must always maintain 16-

byte alignment. As the stack contains many scalar values such as the stack pointer and link

register this means that memory is wasted with the benefit of simpler operation on the stack and

the data segment values. In order to maintain compatibilitywith the native SPU ABI and keep
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Figure 4.2: Simplified mechanism for unaligned storing

the code efficient and simple this solution will be further pursued.

Implementing the 16-byte alignment requires a number of modifications. As the stack is con-

trolled entirely by the code generator part of the SPU the necessary changes were fairly local-

ized. They simply consisted of creating a stack frame of sufficient size so that for every stack

slot 16 bytes were allocated. The data in the stack such as thestack register, link register and

the registers stored by the calling method are then offset from the stack pointer by a multiple of

16 according to the stack layout from the SPU ABI.

Adapting the data segment to 16-byte alignment was more complicated. In order to simplify the

process both the data segment generation for PPU as well as for SPU methods was modified to

observe 16-byte alignment even though this is not a requirement for the PPU. However differ-

entiating between the PPU and SPU data segments would have required an additional number

of conditionals. Based on the introduction of the data segment in section 3.1.2 the actual steps

performed were:

1. adjusting the fixed offsets for the method-specific properties to the next 16-byte aligned

number

2. aligning the current data segment lengths to the next multiple of 16 when adding a new

element

3. fixing some offsets in the stub compiler method which workswith fixed offsets

Once the correct locations to modify were identified the changes were fairly easy. However,
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especially for the stub compiler method finding the requiredchanges was non-trivial as it uses

numerical values to describe the offsets instead of symbolic ones.

Accessing SPU symbols in the PPU code generator

For some functions it might be necessary for the code generator to emit a branch to an SPU

function that is implemented in the C-part. This includes internal helper functions as well as

builtin functions. As the code generator runs on the PPU it does not have direct access to the

SPU functions or more generally symbols included in the SPU binary which are required to cal-

culate the branch target to call such a function. As the SPU binary that is linked in with the PPU

binary is also an ordinary ELF file it is possible to read in therequired symbols manually. For

this purpose the symbol designating the SPU part which is of the typespe program handle t

provides a pointer to its ELF structure which contains all the required information. The exact

implementation of this is structure is reprocuded in 4.2.

1 / * * SPE program h a n d l e

2 * S t r u c t u r e s p e p r o g r a m h a n d l e per CESOF s p e c i f i c a t i o n

3 * l i b s p e 2 a p p l i c a t i o n s u s u a l l y o n l y keep a p o i n t e r

4 * t o t h e program h a n d l e and do n o t use t h e s t r u c t u r e

5 * d i r e c t l y .

6 * /

7 t y p e d e f s t r u c t s p e p r o g r a m h a n d l e {

8 / *
9 * h a n d l e s i z e a l l o w s f o r f u t u r e e x t e n s i o n s o f t h e s p e p r o g r a m h a n d l e

10 * s t r u c t by new f i e l d s , w i t h o u t b r e a k i n g c o m p a t i b i l i t y w i t h e x i s t i n g u s e r s .

11 * Users o f t h e new f i e l d would check whe ther t h e s i z e i s l a r g e enough .

12 * /

13 unsigned i n t h a n d l e s i z e ;

14 void * e l f i m a g e ;

15 void * toe shadow ;

16 } s p e p r o g r a m h a n d l e t ;

Listing 4.2: Implementation of the SPE program handle

A starting point for the code is taken from the libspe2 sources, specifically the included ELF

loader. Once it has loaded the required files into memory the pointer *elf image provides

a reference to the runtime representation of the SPU binary.As an ELF binary consists of a

number of sections which may include symbols the loader has to parse all sections included

in the ELF image looking for a.toe section. Once it has found this section it iterates over

all symbols looking for a few specific ones. Using this code asa base writing a function that

looks for a given symbol in all sections was fairly easy. Associated with the symbol is the offset

at which it will later be found in the SPU’s LS. This offset canthen be used with thebranch

absoluteinstruction which branches to a fixed address.
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In its current implementation the code goes through the entire SPU binary every time an SPU

symbol is requested. As an improvement the symbol could be loaded once and then be saved in

a table allowing for a faster lookup on subsequent runs.

4.3 Shared heap access

Apart from essential steps such as porting the code generator to the SPU an efficient access

to shared data on the heap is crucial to the performance of theentire system. Unfortunately

providing a transparent solution, one that does not requirespecial programming constructs or

mandatory modifications of the source code, has not been given any effort by the Cacao team

so far. This is understandable as the concept of Java on Cell/B.E. presents a novel approach.

As discussed in section 3.2.2 shared heap access requires a number of unforeseen and therefore

large modifications to Cacao. For now the heap and therefore all objects reside in only one

memory and may be directly accessed the same way by all threads which share the same mem-

ory space. With the SPUs and the PPU using different memoriesa mechanism will have to be

developed to access single members or entire objects efficiently from both processor types and

across all memories.

In order to understand the challenges this step poses it is necessary to understand the multi-

threading support provided by Java and the consistency guarantees it makes. This has been

discussed in section 1.2.3. A more formal overview of the Java memory model is given in

[GJS05] chapter 17.4,Memory model. It defines how different actions such as reads, writes

and thread events may be reordered by the JVM and which storage they must affect at which

point. Based on these bounds a number of concepts to support shared heap access along with

their advantages and downsides will be presented in this section.

4.3.1 Individual non-cached access of fields

In the solution used for the prototype implemented as part ofthis thesis the heap and all objects

will only be kept in main memory. Object fields, the data members of a class, will be accessed

individually via DMA transfers. The steps required to implement this solution will be described

in this section.

The major disadvantage with this simple solution lies in thefact that every heap access requires
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at least one DMA transfer and thus will pose a major performance barrier. Since fields are at

most eight byte large the latency of DMA transfers will greatly outweigh the possible band-

width. Additionally the GC requires an extension. Due to thefields being transferred to the

SPU references to objects in the main memory may be stored in the SPU stack and in the SPU

registers in which the stack may partially reside. The GC would have to include these in its

calculations about whether an object is still alive. In order to not cope with this issue at this

point the GC will be turned off. This is supported by Cacao as a compilation switch and results

in heap space not being freed. For small testcases this is acceptable.

This first simple solution also has to take the alignment restrictions of the MFC into account,

mainly the fact that the 16-byte offset for both the target and the source address must match.

Therefore a 16-byte entry is added to the data segment of eachSPU method which serves as a

temporary storage for DMA transfers2. Due to its size every 16-byte offset of a field in main

memory can be matched in the LS. As the alignment of the field inmain memory is not known

at JIT-compile-time the exact address within the temporarystorage to or from which it will be

transferred has to be calculated at runtime so both 16-byte offsets match.

The required code sequence for storing a field can be found at 4.3 while a graphical explanation

is given in figure 4.3. The actual steps required are:

1. Load the value to be stored into a register

2. Shuffle the value to the correct slot according to the offset of the target address

3. Store the register contents to the temporary storage

4. Calculate the matching source address according to the offset of the target address

5. Perform the transfer

For load operations this sequence is mostly reversed.

1 / * sample code f o r s t o r i n g a s t a t i c f i e l d * /

2 / * s1 c o n t a i n s t h e v a l u e t o be s t o r e , REG ITMP3 SPU t h e t a r g e t a d d r e s s * /

3

4 / * g e n e r a t e t h e b i t m a s k f o r moving t h e a c t u a l v a l u e t o t h e r i g h t s l o t a c c o r d i n g t o t h e ←֓

t a r g e t

5 a d d r e s s * /

6 M CWD( 0 , REGITMP1 SPU , REGITMP3 SPU ) ;

7 / * use t h e b i t m a s k t o s h u f f l e t h e r e g i s t e r a c c o r d i n g l y * /

8 M SHUFB( s1 , s1 , s1 , REGITMP3 SPU ) ;

9 / * s t o r e t h e r e g i s t e r c o n t e n t s t o t h e t emporary s t o r a g e * /

10 M IST ( s1 , REGPV SPU , MfcTemp ) ;

11

2This is not thread-safe as the data segment is shared across all simultaneous executions of a method. However
executing several threads on one SPU is not possible so this issue is negligible
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Figure 4.3: DMA access to individual object members, storing a field

12 / * c a l u l a t e t h e 16−b y t e o f f s e t o f t h e t a r g e t a d d r e s s by ANDing i t w i t h 0xF * /

13 M ANDI(0 xF , REG ITMP1 SPU , REGITMP3 SPU ) ;

14 / * add t h e o f f s e t t o t h e p r o c e d u r e v e c t o r * /

15 M A( REG ITMP3 SPU , REGPV SPU , REGITMP3 SPU ) ;

16 / * add t h e o f f s e t o f t h e t emporary s t o r a g e , t h i s g i v e s t h e LS t a r g e t a d d r e s s * /

17 M AI ( MfcTemp , REG ITMP3 SPU , REGITMP3 SPU ) ;

18

19 / * e m i t t h e c o r r e c t code s e q u e n c e f o r s t o r i n g t h e v a l u e i n t h e main memory * /

20 emi t m fc spu ( jd , MFCPUT CMD, REG ITMP3 SPU , REGITMP1 SPU , 4 , 5 ) ;

Listing 4.3: Code sequence required to store an unaligned field via DMA

Since the method to get or set a value will be executed on the processor where the object resides

ie. on the PPU all threads regardless of where they are being executed will access the same

monitor. Therefore synchronized access can be realized as required by the standard provided

the Java program is thread-safe. Accessing the monitor fromthe SPU can be done by using

atomic DMA transfers since the monitor is just an address in memory. Using atomic DMA

transfers ensures that no other thread may modify the monitor while it is being locked.

4.3.2 Sharing objects between processors

One efficient and transparent solution is based on the fact that it is the Java programmer’s

responsibility to ensure thread-safety. This means in turnthat non-thread-safe parts may be

executed in an incoherent manner while still being compliant to the Java specification. The

solution introduced in this section exploits this concept accessing only those fields in main

memory that are used in synchronized statements while locally caching the other fields. The

individual steps required to implement this solution will be detailed in additional subsections.

One of the main problems with efficient shared and thread-safe access lies in the fact that Java

does not support locking individual members of objects and thread-safety being the responsi-
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bility of the Java programmer. Even when all fields of an object are private and it provides

synchronized getters and setters there is no guarantee thatsome other method of the object does

not modify these fields directly. Therefore the JVM can only make assumptions about which

members are actually accessible directly or indirectly by only one thread at a time. However, in

order to achieve thread-safety for shared objects the programmer must ensure that this object is

accessed only from within a properly synchronized block.

Access objects locally when possible

One approach to achieve efficient object access is to copy theentire object that the SPU will

work on to the LS. This must also include the object’s methodslike the getters and setters

so that they can be executed on the SPU. Otherwise the benefit of having local access to the

object’s fields would be negated by having to execute the access methods on the PPU. As long

as the object includes non-synchronized methods these may be executed directly on the SPU

working with the available local copy without observing coherence with the original object in

the main memory. This is possible since the semantics of Javado not guarantee a consistent

state in this case. As for synchronized methods, these may beexecuted on the SPU if locally

available however all operations on object members within asynchronized block or method

must be executed on the original object so as to ensure consistency.

Being able to execute an object’s methods locally also requires compiling them for both the PPU

and the SPU. In principle this is not a problem as each methodinfo structure points to a codeinfo

structure which in turn contains the important informationabout the code such as its location

and size. The methodinfo could thus simply be extended to contain one codeinfo structure for

both processor types. When the respective codeinfo for a processor type is a NULL pointer this

indicates that the method must be compiled.

Track object references

In order for this method to work it is required to track the object references when they are passed

between methods. This is possible since the Java language differentiates between actual object

references and primitive types featuring the same bit pattern. Additionally, casting a primitive

type to an object is not directly supported by Java and requires the creation of a new object. This

way the JVM can then at first create new objects in the memory space of the creating method.

Once the object reference is passed to another method the object may have to be moved to the
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main memory for shared access or can be kept in its current memory if the method is executed

on the same processor.

As an optimization the JVM could intercept the creation of new objects to which no local

reference is kept when they are being passed to a method on a different processor. Since the

calling method does not store a reference to the object it is no longer accessible from that

processor meaning that it can be moved without any conflicting access issues. An example for

this is passing a copy of an object usingclone() , which duplicates an entire object, directly in

the argument list of the method. Additionally the JVM may generate the required instructions

for moving the object before the method is actually called. While this must be done with care as

values in the object may still change it could hide the latency of the required DMA transfer.

Transfer scattered objects and references

One issue with moving objects between different memories isthe fact that objects often refer-

ence other objects by internally, on the JVM level, using pointers. Due to this mechanism an

object with all its further referenced objects may be fragmented across memory. This is mak-

ing it hard to efficiently use DMA transfers to move the objectto another memory since DMA

transfers usually operate on contiguous memory areas. Two remedies for this problem may be

used:

1. The SPU requests an address list for the object in questionby notifying the PPU with a

mailbox message or a stop-and-signal call and passing the object reference. The PPU then

resolves the chain of objects referenced by the given object, possibly only up to a certain

depth, and transmits the generated address list to the SPU. Based on this address list the

SPU then initiates an MFC list transfer which copies the entire object and its references

to the LS in one step. After adjusting the object references to the LS addresses the object

can then be used.

2. The SPU only transfers the first level of an object of which both the address as well as the

size is known. This includes only primitive types, object references will not be resolved

but their values transmitted. As an additional improvementthe program flow could be

analyzed as to whether the referenced objects are actually needed. If they are, they can

be transferred, possibly some time before they are actuallyneeded in order to hide the

latency of the DMA transfer. The object’s methods will also only be transferred once

they are actually required as resolving their code locationand size requires a number of

indirections.
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Conclusion

This solution will almost certainly produce inconsistent states when not enough care is taken.

Due to the latencies of the DMA transfers and the disjoint memories of the processors the

chance for conflicting accesses to fields is higher than with atraditional Java multi-threading

implementation on a shared-memory architecture. However,the Java specification permits these

inconsistencies if they do not violate the Java memory model. While great care has to be taken

to operate within these constraints the discussed solutionprovides for great flexibility. Without

any further modifications multiple threads may each work without the latency associated with

DMA transfers on the uncritical parts of their local copy of an object. Critical parts may be

protected as usual by synchronized statements resulting inthread-safe execution at the cost of

reduced performance. Due to multiple threads competing fora lock and having to wait at a

certain point however synchronized statements in Java always come with a certain performance

hit. While this impact has been significantly reduced over thelast few years it still is noticeable

so a slowdown coming from this solution is acceptable.

As with the first solution presented object references may also be stored in the SPU stack and in

the SPU registers. The GC will have to include these references in its calculations. As the GC

represents a completely different and complex field yet may conveniently be turned off during

development extending the GC in this fashion is out of the scope of this thesis. However, a

principle idea how to realize a solution to these challengesis presented in section 6.3.

4.3.3 Read-only copies on the SPU

Another solution includes a few simplifications that are however not transparent to the Java

programmer. If objects passed to methods executed on the SPUare seen as read-only copies of

objects in the main heap this would allow the GC to ignore the SPU stack and registers in its

calculations. The objects in the SPU heap could simply be discarded without writing them back

to the main memory once the SPU method has finished. If the results of methods executed on

the SPU are to be kept they have to be explicitly written back.This simplification is especially

rewarding since access to the SPU registers from the PPU as required by a GC for Java on

Cell/B.E. is very expensive performance-wise. Accessing theregisters requires the kernel to

load a small program to the SPU that writes out the contents ofthe registers to main memory.

This is almost as expensive as an entire context-switch which occurs when a new program is

moved to a used SPU.
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4.4 Swap code in and out of the LS

In order to provide fast execution of methods on the SPU it is desirable to keep frequently used

methods and those that may be executed soon in the LS. As the LSprovides only limited space

a mechanism providing a cache of methods has to be developed.After introducing the solution

chosen by the SPU-GCC an approach to this problem for Java on Cell/B.E. will be discussed in

this section.

4.4.1 SPU-GCC overlays

The SPU-GCC contains a mechanism that can be used to split SPU programs if they are too

large to fit entirely into the LS. The different parts will then automatically be transferred to

the LS or cached as required. A detailed introduction to thismechanism is given in [IBM07c]

chapter 4,SPU code overlay.

In the approach used for the SPU-GCC code overlays single function represents the smallest

unit that can be cached. Functions can be combined into segments which are always transferred

entirely to the LS. Multiple segments form a region of which exclusively one segment is kept

in the LS at a time. So if another segment is needed the currently cached segment in this region

if any is overwritten. When branching between segments the branch is actually redirected to a

stub function by the compiler. This stub function for which one exists for each real function

fetches the target segment from main memory if necessary andthen jumps to the real branch

target. As the runtime location of all functions is known at compile-time all these branches can

be generated at compile-time even though the target function may not actually be in the LS at

the time of the branch.

When using the SPU-GCC the distribution of functions into segments and regions has to be

defined manually in a linker script. Apart from preparing thebinary for overlays the linker also

automatically inserts the stub and other required functions and tables to maintain an overview

of currently cached segments. This manual creation of a linker script allows for a reduction of

swap operations when careful manual analysis of the callingdependencies between functions is

performed. Ideally the calling and the called function reside in different regions so the contain-

ing segments do not have to be overwritten when calling the method and again when returning.

With this approach the developer has to manually ensure thatthe linker script always matches

the actual program.
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The SPU-GCC overlay support imposes two size restrictions: Under ideal circumstances con-

cerning segmentation and runtime data the total possible size of the entire SPU program is 512

MiB and a single function cannot be larger than the entire LS as cannot be further segmented.

4.4.2 Caching Java methods

As the prototype built for this project uses the SPU SoftwareManaged Cache library this library

and its usage will first be introduced in this section. Afterwards its implementation in the

prototype will be explained.

The SPU Software Managed Cache library

The SPU Software Managed Cache Library [IBM07b] is commonly used to cache frequently

required data in the LS. As the cache is managed entirely by software it can be customized for

the needs of the program that uses it. This includes for example the size of the cache lines,

the number of sets, the associativity of the cache and whether it provides read only access or

read and write. Including the cache in a program requires setting these parameters and other

using precompiler definitions and then including a header file provided by the library. With

these few prerequisites the compiler automatically reserves the required space for the cache and

provides the methods to access it. The precompiler definitions can be re-set and the header

file re-included several times which allows the creation of multiple caches for different needs.

The flexibility of a software managed cache however comes at the price that it is not coherent in

respect to changes in main memory. When a value cached in the LSis changed in main memory

this change will not necessarily be visible in the cache.

The SPU Software Managed Cache library provides different interfaces, an external and an in-

ternal one. The external or safe interface acts only on the values included in the cache, not

the way they are stored. This means that a read from the cache usingcache rd(...) given an

address in main memory returns the value at that address. Whenthe value at this address has

already been cached it will be returned from the cache otherwise it will be transferred to the

LS. Similarly the write commandcache wr(...) writes out a value to a given main memory

address. The internal or unsafe interface allows direct access of the cache lines. When the

program notifies the cache that it wants to read or write an address in main memory by call-

ing cache rw(...) an LS pointer to the cache line containing the data is returned once it is

available. As the data in that line may be cast out between accesses it must be locked and after-
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wards unlocked usingcache lock(...) andcache unlock(...) respectively. Additionally

the internal interface provides asynchronous access. For this case two commands are used.

cache touch(...) which makes the cache prefetch the requested main memory contents and

cache wait() which waits until this data is actually available.

Implementation in the prototype

As explained the SPU Software Managed Cache library is commonly used to cache data in the

LS. However, as the machine code translation for the Java methods is generated at runtime it can

be regarded as such. Therefore this library provides a suitable tool to cache frequently required

functions in the LS.

The two main benefits it provides are:

1. No additional code to setup and control DMA transfers is required as the library provides

all necessary functions

2. 4-way set associativity of the cache ensures a low risk of cache-thrashing even for calling

chains that occupy the same set

N -way set associativity determines in which cache lines or set the data for a given main memory

address may be stored. The possible cache lines are usually determined by calculating a hash

value of the target address. The higher theN the more possible cache lines the data may be

stored in and the lower the risk that certain access patternsaccessing data from addresses with

the same hash value constantly cast each other out of the cache. Applied to this project this

would be the case with a calling chain of methods that occupy the same set. With 4-way set

associativity 4 different methods of the same set can be called before the first one has to be cast

out of the cache.

A survey on the distribution of the size of compiled methods has been conducted forECJ,

the Java compiler used by the Eclipse platform, itself a fairly complex Java program. It has

shown that the vast majority of Java methods is small in size,in fact around 95% of all methods

fall below the 4 KiB border. This result is expected as Java with its object-oriented approach

encourages the use of many small methods that perform only a limited set of operations on an

object. 4 KiB for a cache size line also marks the arbitrary limit the cache library supports. For

most data caching needs this size will likely suffice howeversome methods may exceed this

limit as shown. The limitation can be circumvented by modifying the header files for the library

and use a private copy. While this is not a clean solution it works well enough for a prototype.
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However, with the solution for partitioning a method into fixed-size blocks presented in the next

section this may not be necessary. Alternatively, it could be decided that methods that are too

large are instead executed on the PPU.

Including the prerequisites for the cache can be conveniently done in the C-part of the SPU

binary so that the SPU-GCC can set up all required functions and memory areas. The exact

semantics for calling the cache largely depend on the mechanism to branch between multiple

methods on the SPU. Therefore further details of its implementation in the prototype and the

way it is called will be given in section 4.6.2.

4.4.3 Segmentation of functions

Even without the arbitrary limitation of cache size lines a fixed-size must be set for them. As the

machine code translation for a Java method may exceed this limit as well a mechanism to break

the code into smaller blocks must be developed if larger should methods be executable on the

SPU. The issues of implementing such a mechanism will be briefly discussed in this section.

As this mechanism will work on the assembler code level only two kinds of instructions will

have to be adjusted, load and store instructions and branches. Since the space for a method’s

code is allocated at runtime and its final location not even known when this method is JIT-

compiled all of these instructions work almost exclusivelywith offsets. Most of them such as

accesses to the data segment are relative to the procedure vector which is kept in a register. This

way as long as the data segment fits into one block an instruction in another block may access

the data segment by accessing the address in the procedure vector plus an offset. This should

be the common case with an appropriate block size. However, data segment accesses will be

problematic when the data segment is split across multiple blocks. In this case the procedure

vector may not point to the same block as the data segment element requested so the relative

load or store does not work. Additionally relative branches, those that branch to the current

instruction plus an offset, across a block boundary are problematic. Since the blocks are cached

as requested the current LS address of a block is not known.

The mechanism should ensure not to break constructs such as loops into different blocks. What-

ever solution is chosen for this problem branching within the same block will certainly be less

expensive performance-wise. Observing the structure of such constructs can be achieved by

using the information generated in the first step of the JIT compilation, the basic block deter-

mination. This step breaks up the method after every bytecode instruction that may result in

a jump so that every basic block marks the potential target ofa jump. With this information
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available it will be easier to limit the number of jumps across segments.

4.5 Selective execution on the SPU

In order to give the Java developer a way to select which methods should be executed on the

SPU three different solutions seem feasible. They will be discussed in individual subsections

and afterwards evaluated. A fourth option, leaving it to theJVM to decide which methods to

offload to the SPU will be briefly presented in section 6.3.1.

4.5.1 Create a special class or interface to mark SPU threads

In Java a thread is created by deriving a class from the superclassThread or implementing

the interfaceRunnable . The entry point for the thread is the methodrun() which has to

be implemented by the subclass. In order to start the thread its methodstart() is called.

Similarly to this a thread designated to run on the SPU could extendSpuThread or implement

SpuRunnable and the required methods. These special cases would have to be intercepted by

the JVM and then turned into an SPU thread.

The advantage of this approach is its similarity to the current C programming model for Linux

on the Cell/B.E. as well as the Java multi-thread programming model. Both usually feature a

single-threaded main program that at some point branches into a number of threads. As for

the C programming model, the main program is executed on the PPU while the threads run on

the SPU. Java programs usually execute the main program and the threads on the same CPU.

With Java on Cell/B.E., the main program would still be run on the PPU while the threads are

executed on the SPUs.

4.5.2 Mark SPU methods and classes with annotations

With the recent addition ofannotationsto the Java programming language another possibility

has opened up. Annotations represent a way to add meta-data to functions and classes that can

be processed at compile-time, at run-time or by external tools such as test frameworks. With

these it will be possible to mark certain methods or entire classes for execution on the SPU.

When the JVM encounters such an annotation it will create an SPU thread if necessary and
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execute the method in that thread. Another benefit of this approach lies in the fact that SPU

methods can be executed at arbitrary times in the main program by simply calling them. The

downside however is that the methods would be called synchronously meaning that the caller

will have to wait for the called method to finish.

4.5.3 Group SPU methods and classes in a special package

Sharing the benefits and downsides with the annotations approach is another solution where

the classes and thus the methods designated for execution onthe SPU will be grouped together

into a package such ascom.ibm.spu.math . In the Java programing language classes with

similar functionality can be combined into a so-called package. This package along with the

access modifiers such asprivate andpublic also governs object access in the way that certain

classes and methods may only be available to classes and methods in the same package. Apart

from the lack of meta-data this solution also provides for a clear view of which methods are

to be offloaded to the SPU. While it grants full flexibility about the point they are executed at

the methods are also executed synchronously. Again, the JVMwill have to intercept calls to

methods in this package and execute them on the SPU.

4.5.4 Conclusion

While the two latter solutions share some interesting features they would require a change in the

semantics of a Java program. An interesting application of these approaches lies in a scenario

that is closer to a distributed-memory model with message passing. Calling these methods could

trigger execution of a method on the SPU. This method is then executed asynchronously and a

later call to another SPU method fetches the results calculated in the meantime.

However, since the Thread approach most closely resembles the familiar Java and C program-

ming models and allows full exploitation of the CBEA’s multi-threaded nature it presents the

most favorable solution and the one that will be further pursued.
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4.6 Communication and branching between SPUs and PPU

The JVM has to support a number of interactions between the PPU and the SPUs. These inter-

actions will be discussed in this section. These include internal JVM functions such as resolving

of class members at runtime and branching from one processorto another. Since especially the

branching is complex the different cases, SPU to PPU and SPU to SPU, will be further de-

tailed in additional subsections. Of the remaining cases PPU to PPU is already implemented

in Cacao and PPU to SPU is supported as described in section 4.1.2. This calling scheme only

allows passing information about the method to execute without any further arguments which

is sufficient for starting a thread or the main method on the SPU.

4.6.1 Lazy resolving on the SPU

In order to allow lazy resolving of class members from the SPUthe patcher as described in

section 3.1.4 has to be extended. These extensions are relatively straightforward and can be

realized by using the stop-and-signal mechanism. The standard Cacao patcher stub sets up its

own stack and stores the data that is to be passed to the patcher in there. This mechanism

can also be used in a similar fashion on the SPU, requiring as the only modification that the

stack pointer be stored right after thestop instruction. This way the stop-and-signal callback

function can resolve the LS pointer, reach the information stored in the patcher stub stack and

pass it onwards.

Due to the SPU’s alignment restrictions this requires a number of steps. First, a gap for the stack

pointer has to be left in the instruction stream right after the stop instruction. Then the right

code sequence for loading the quadword surrounding the stack pointer position, generating a

bitmask and inserting the actual stack pointer at the correct offset in the quadword and storing

the prepared quadword again has to be generated. A graphicalrepresentation of this process is

given by figure 4.4 and the required code sequence is listed in4.4.

1 / * s e t up t h e opcode + t h e LS p o i n t e r = opda ta f o r t h e PPE−a s s i s t e d c a l l * /

2 M ILHU ( ( ( opcode << SPUCALL PATCHER) & 0xFF00 ) , REGITMP4 SPU ) ;

3 M MOVE( REG SP SPU , REGITMP5 SPU ) ;

4 M OR( REGITMP4 SPU , REGITMP5 SPU , REGITMP4 SPU ) ;

5

6 / * load t h e quadword s u r r o u n d i n g t h e gap f o r t h e opda ta * /

7 M LQR( 5 , REGITMP5 SPU ) ;

8

9 / * c a l c u l a t e o f f s e t and move t h e opda ta t o t h e r i g h t s l o t * /

10 d i s p = ( ( u4 * ) cd−>mcodept r ) − ( ( u4 * ) cd−>mcodebase ) ;

11 MCWD( ( 4 * ( d i s p + 4) ) % 16 , REGSP SPU , REGITMP6 SPU ) ;

12 M SHUFB( REGITMP4 SPU , REGITMP5 SPU , REGITMP4 SPU , REGITMP6 SPU ) ;
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Figure 4.4: Storing an LS pointer at runtime

13

14 / * s t o r e t h e p r e p a r e d quadword r i g h t a f t e r t h e STOP * /

15 M STQR( 2 , REGITMP4 SPU ) ;

16 M STOP(0 x2107 ) ;

17

18 / * l e a v e gap f o r t h e LS p o i n t e r * /

19 cd−>mcodept r += 4 ;

Listing 4.4: Code sequence to store an LS pointer at runtime

The callback function only has to transfer the SPU stack intoa format suitable for the Cacao

patcher and can then call it. The patcher itself can run almost unmodified as it has direct access

to the LS of the SPU that called the patcher. As methods may be swapped out of the LS the

original version of the compiled method in the main memory has to be patched as well. This

way the modifications are not lost when this method is cast outfrom the LS. Resolving the

address of the code in main memory is possible through the information provided to the patcher

which also indicates the method that has called the member. Additionally multiple SPU threads

may try to concurrently resolve the same member. As Cacao already supports multi-threading

entry to the patcher is protected with a lock on the object that the member belongs to. Acquiring

this lock blocks until it has been released and exits if it detects that the member has already been

resolved and the calling method been patched. In order to ensure that the method gets patched

correctly on all SPUs this second exit condition for the patcher has to be removed. Subsequent

calls to the patcher with the same member will still be fastersince only the references on the

SPU have to be modified, the actual resolving of the member is already done.

Once the patcher and the callback function have returned execution is automatically resumed on

the SPU right after thestop instruction plus four bytes so that the stack pointer is skipped.
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4.6.2 Branching from the SPU

Depending on the type of method called different information is required to resolve the location

of the target method’s code. As described in section 3.1.5 this may just be the address of the

method’s information structure or the object header and a number of offsets. The ways to

resolve the location of the code when branching from the SPU to either a method on the PPU

or another method on the SPU will be explained in this section.

As a first solution for the prototype all required information to resolve the code is passed to the

PPU for every method call regardless of where it will be executed. The way this data is handled

on the PPU depends on where the called method is to be executedand will be further detailed

in the appropriate subsection. The easiest way of passing information between these two pro-

cessors is the stop-and-signal mechanism. The memory area used for passing the arguments is

realized as an additional reduced stub stack frame containing only the stack chain pointer, link

register and arguments. The LS pointer to the first argument is then passed to the PPU. The Java

method will set up this stub stack frame itself and insert theLS pointer to it in the instruction

stream before issuing thestop instruction. The deallocation of this frame depends on whether

the method is executed on the PPU or the SPU.

SPU to PPU

When calling a method on the PPU from the SPU the call is synchronous so the SPU will have

to wait for the method on the PPU to finish before it can resume execution. Therefore using

the slow but simple to use stop-and-signal mechanism is adequate for this purpose. Using the

information the PPU is being passed via the stop-and-signalcall it can determine which method

it has to execute.

An additional requirement for calling a method on the PPU is to store all arguments to this

method on the stack so they can be accessed by the PPU. The codegenerator already supports

reading the given arguments from the memory area into the argument registers when entering

a method as well as writing out the arguments from registers to memory when calling another

function. Thus, it was only required to enforce that when calling a method on the PPU all

arguments would be stored in memory. The callback function then transforms the data into a

structure suitable for use with a special transition functions that allows calling a Java method

from C code. The return value of that method, if any, is then written back to the LS by the

callback function and is picked up by the Java method once execution is resumed. The stub
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stack frame is then deallocated by the Java method.

SPU to SPU

Branching between two methods on the same SPU requires a number of modifications. Two

points have to be ensured for this to work:

1. A method has to be able to return to the point from which it was called in the calling

method

2. The information for transferring the calling method’s code back into the LS if necessary

has to be provided

Item one is a common requirement and is already ensured by using the link register. Using a

variation of the branch instructions the address of the instruction following the branch is stored

to the link register. Forleaf methods, those methods that do not branch to further methods, the

method can simply branch to the address stored in the link register once it is done and thus

resume execution of the caller. For non-leaf methods the link register has to be stored in the

stack frame of the calling function as defined by the SPU ABI. Once a non-leaf method is done

it loads the original link register from the stack frame and can return to the calling method as

well.

The required information for item two consists of the address of the data segment in main

memory, the combined size of data segment and code and the entrypoint into the method. The

entrypoint marks the end of the data segment and the beginning of the actual code. This in-

formation is obtained by passing the required arguments as described above to the PPU in a

stop-and-signal call. The PPU then resolves the requested information and stores it directly in

the LS in place of the methodinfo or objectinfo. This saves the SPU from issuing a number

of small DMA transfers to resolve the pointers itself. With this info available the SPU then

branches from the Java method to a short assembler function that callscache rw(...) from

the cache library which transfers the method’s code into theLS and returns an LS pointer to

the respective cache line. The assembler function stores the return address to the calling Java

method, then adjusts the procedure vector and branches to the newly transferred method while

setting the link register. The connection between the different stack frames and methods can be

seen in figure 4.5.

As seen in figure 4.6 when the called Java method returns it deallocates its stack frame if it is

not a leaf method and branches to where it was called from, in this case the assembler function.
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The stack pointer then points to the called method’s stub stack frame (callee stub). Since the

required information for resuming execution of the callingmethod is available from the calling

method’s stub stack frame (caller stub) the callee stub is deallocated after retrieving the link

register for the calling method from it, leaving the stack pointer to point to the calling method’s

stack frame. The stack pointer is saved and the stack chain traced one more step back to the

caller stub. The calling method is transferred back into theLS using the cache library, its stack

pointer restored and execution resumed where it had previously been stopped. The stub stack

frame is deallocated by the assembler part right before returning to the Java method.

Special care has to be taken with the first Java method that is called. With just the mechanism

described above the SPU would try to locate a non-existing stub stack frame for the method that

called the first Java method. In order to prevent this the linkregister is adjusted for the first Java

method so that it does not return to the DMA transfer stub but instead to an exit function that

will safely move on to the C-part on the SPU from which the first Java method was called.
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Figure 4.5: Layout of the real and stub stack frames
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Figure 4.6: Returning from a Java method
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As part of this thesis a prototype has been developed in whichsome of the concepts described

have been implemented. As a prototype it provides only a proof of concept and is not yet

capable of running full programs. However it provided good use in testing out some ideas. The

capabilities of this prototype will be examined in one subsection while some rough guidelines

and advice for a programing style that may benefit Java on Cell/B.E. will be given in another.

5.1 Capabilities of the prototype implementation

The task of porting a JVM is in itself already a very complex and time-consuming one. How-

ever, especially for such a unique architecture as Cell/B.E. many new challenges have to be

solved and new concepts developed. Therefore not all solutions presented in chapter 4 could

be successfully implemented during the limited available time for this thesis. Currently the

prototype is capable of doing the following things:

• It can set up a single SPU to await mailbox notifications fromthe PPU. The SPU then

independently fetches the method’s code using the SPU Software Managed Cache Library

and executes it.

• All submethods that are part of a class calledSpu will also be executed on the SPU. Using

the branch mechanism described in section 4.6.2 the code forthe submethod will also be

fetched using the cache library. All required information for returning to the calling

method will be stored in stub stack frames. This solution waschosen during development

instead of one of the ideas presented in section 4.5 as it was easier to implement and

provided a simple way to test the different branch semanticsbetween processors.

• All other methods will be executed on the PPU to which the SPUmay pass arguments as

explained in section 4.6.2. This way the SPU is for example able to print out values to the

console by calling the IO methods on the PPU.
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• Most types of members can be lazily resolved from the SPU using the mechanism dis-

cussed in section 4.6.1 which includes passing the requiredinformation to the PPU using

a stop-and-signal notification.

• Object access follows the principles described in section4.3.1. This means that each

access to a field from the SPU requires a single DMA transfer, no data will be cached.

For the prototype no thread-safety mechanisms are observedand the GC has not been

extended to account for object references on the SPU.

• Apart from object accesses and method calls the code generator for the SPU mostly sup-

ports arithmetic operations. These were implemented earlyfor two reasons. First, they

could be used to test if other bytecode instructions that load and store data for example

from the stack as well as the handling of arguments and registers were correctly imple-

mented. Second, they can be used to create load and perform measurements on the SPU

when calling them in a loop. Therefore the necessary branch instructions for setting up

simple loops were also implemented.

The current prototype heavily relies on stop-and-signal calls for many different situations. As

they provide an easy way to pass information back and forth between PPU and SPU they were

used in many cases during implementation to facilitate the different steps. For some situations

such as calling the patcher this mechanism makes sense as theSPU has to wait for the PPU

to finish its part. However for others such as obtaining the required information for calling a

method other ways such as an asynchronous DMA transfer may bemore suitable. This has the

benefit of enabling the SPU to fetch the information in the background ahead of time and it

eases the load on the PPU which may become a bottle neck when a greater number of SPUs

constantly call methods on it. Depending on the situation itmay also improve performance

on the SPU. While the overhead of a stop-and-signal call has been measured to be at around

1.3×10−5 seconds obtaining the required information via DMA may be faster depending on

how many pointers have to be resolved.

5.2 Programming advice

Due to the fact that only very limited Java programs can be runas intended by the prototype in its

current stage it is hard to give any programming advice. However with the current non-caching

model in use and even more so with the later shared heap accessmodel with a local cache it will

be very important to be careful with synchronized statements. They already provide a perfor-

mance barrier for traditional JVMs where all threads accessthe same memory space. However
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with the disjoint model of Cell/B.E the penalty will be much higher due to the increased latency

that comes with multi-threading actions such as synchronization across different memories and

cores. When a program manages to keep these barriers low whileproviding and handling data

in a way that allows threads to work largely unsynchronized this program could achieve a good

performance increase by employing the SPUs.
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6.1 Experiences during porting

6.1.1 Infinite recursion with debug flags

One of the gravest barriers in the early stage was getting theofficial Cacao release to run on just

the PPU of a Cell/B.E. based system. An unfortunate combination of compile flags led to an

infinite loop. A certain Java method in Classpath responsiblefor providing interactions between

Classpath and the JVM called theprintln() Java method in its constructor. At this point

the class providingprintln() was not yet initialized so this step had to be performed first.

Through a number of further methods required for initialization the originating Java method

was called again as I/O functions such asprintln() require the JVM interaction. At this point

the loop started anew. The obvious result of this was a stack overflow however without any

indication of its cause. While Cacao provides a very verbose debug option,-verbose:call

that prints a message upon each method’s beginning and end this option produces data in excess

of 2 GiB which is too much when not knowing what to look for. Thekey to finding the root

cause was using GDB’s backtrace option once Cacao had caused the stack overflow. Using the

available backtrace-verbose:call could be set incrementally at methods lower in the stack

ie. methods that were called earlier. Setting this debug switch manually resulted in only those

methods generating verbose output that were compiled afterthe switch had been set and in turn

generating less output with more relevance. Incrementallysetting the switch at earlier times

soon showed a certain sequence of the same methods being callover and over again. Once the

method callingprintln() in its constructor had been identified solving this bug was simply a

matter of turning off thedebug flag for classpath.
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6.2 Related work

Due to the perceived notion that only lower-level complex programing languages such as C and

Fortran can exploit the full potential of the Cell/B.E. very little work has been done in order to

enable Java on Cell. The few known approaches will be discussed in the following.

6.2.1 CellVM

CellVM [NGF06] takes an approach similar to one discussed in this thesis but was not further

pursued. A JVM, in this case JamVM, is modified to run on the SPU. The final goal is to

provide a single system image so that a homogeneous view on Cell/B.E. is provided. The ar-

chitecture built by CellVM consists of anCellVM Abstraction Layerthat receives and redirects

all requests accordingly to the different JVMs working in the background. These include one

CoreVM based on JamVM on every SPU and theShellVM on the PPE. The most common

bytecode instructions can be directly executed by the CoreVMs and only for more complex

function is the assistance of the ShellVM required. These mostly include functions concerned

with access to system parts and object and array creation. Asthe entire heap in this architecture

resides in main memory CellVM implements a software-controlled cache mechanism for the

SPUs so previously fetched data may be reused from the LS again if possible.

The authors also provide a performance evaluation in which they demonstrate cache hit rates

between right below 80% and up to 100%. Additionally an almost linear speed-up from using

1 up to 8 threads is observed.

6.2.2 SPU-accelerated parallel JIT-compilation of method s

A completely different approach is pursued by [Hoy07]. In this master thesis project Cacao will

be accelerated not by using the SPUs for highly-parallel execution of methods but by using them

for parallel compilation of methods. The benefit of this approach is the fact that the speed-up

does not depend on the Java program executed and how effectively it exploits the parallelism.

If this way is in fact fast enough methods can be compiled speculatively in advance so that the

overhead of JIT-compilation should almost cease to exist. Unfortunately no further information

about the progress of this thesis could be obtained. Howeverit will be interesting to see for

which part the SPU’s provide more benefit, for execution of methods or for their compilation.
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6.3 Outlook

Unfortunately the outlook for Java on Cell/B.E. is currently hard to determine. IBM as well as

other third-party vendors providing development tools andframeworks for Cell/B.E. focus their

current efforts on mostly C/C++ based solutions. As these are still the most important languages

in the HPC sector this direction is understandable. Even though Java still cannot quite live up

to C/C++’s performance level there is a reason why there is sucha huge movement behind it.

So if Cell/B.E. may not be the right choice to compete in the HPC sector it could still be used to

accelerate computationally intensive Java applications such as financial ones or other business

software.

For the future development of Java on Cell/B.E. many differentdirections are suggested by this

thesis. Apart from the suggested implementation variations presented in chapter 4 that have

not been realized yet a number of further-reaching optimizations may be feasible which will be

discussed in the next subsection.

6.3.1 Optimizations

Auto-vectorization

A rather obvious yet highly complex optimization is auto-vectorization which means the au-

tomatic generation of SIMD code from the scalar code provided. Potential areas for this op-

timization can be found mostly in loop unrolling. If the bodyof the loop performs work on

arrays multiple iterations may be replaced with a few SIMD instructions. While SIMD ex-

ploitation is essential to fully utilize the power of the SPUthis is a non-trivial task with lots of

restrictions and pitfalls to observe. Even with traditional ahead-of-time compilers such as GCC

which can spend a lot more time inspecting the structure and data dependencies of the code the

auto-vectorization is still a work in progress1. Auto-vectorizing Java code is especially prob-

lematic since code that may throw exceptions cannot be optimized and each access to an array

may throw an out-of-bounds exception that occurs when trying to access an element outside the

bounds of the array.

1http://gcc.gnu.org/projects/tree-ssa/vectorization.html
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Automatic offloading

A JIT compiler’s ability to optimize methods at runtime can be used to further advantage. Once

the JVM identifies a method as being numerically intensive itmay recompile the method for

execution on the SPU. Methods that qualify for this optimization should additionally require

only little external data from other methods and run long enough to compensate for the over-

head of executing a method on the SPU. A simple way to measure the numerical intensity of

a method may be just to count the number of arithmetic bytecodes and weigh them against

other instructions. This optimization would be especiallybeneficial in combination with auto-

vectorization.

Extending the GC

As discussed several times before for example in section 4.3.1 when references to objects in

the main memory are used on the SPU this requires an extensionof the GC. In this case it also

has to include the various places where the SPU may store object references in its calculations

whether an object is still reachable. As long as the references reside on the stack in the LS the

problem is fairly easy as the PPU and thus the GC has direct access to the LS. However as parts

of the Java stack for an SPU method may be mapped to SPU registers the object references may

also reside there while still being valid. Accessing the SPUregisters from the PPU requires

saving the current SPU context and loading a new program thatwrites out the registers to main

memory. This step is prohibitively performance-expensive.

However, a more efficient solution can be based on the fact that the PPU can cause interrupts on

the SPU as described in [IBM07a] chapter 18,SPE Events. When the SPU has been configured

to receive interrupts it will automatically branch to LS address 0 and execute the code there

which may be a user-defined interrupt handler. Used in conjunction with the GC the GC could

always cause an interrupt on the SPU whenever it is run. The interrupt handler which has direct

access to the SPU registers may write out their values to mainmemory from where they could

be used by the GC. Once the GC has finished work the interrupt handler has to rebuilt the

execution state of the SPU thread before the interrupt and can then return back to where it was

called from.
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6.4 Conclusion

Java on Cell/B.E. provides an interesting combination of two relevant modern-day technologies.

The multi-threaded nature of both show great potential for acombined work and the additional

layer of the JVM allows hiding the heterogeneous architecture of the Cell/B.E. so that Java

programmers do not have to adjust considerably to this platform.

The work done in this thesis has shown that it is indeed possible to run JIT-compiled code on the

SPUs and transparently access objects across the differentmemories. The Java programs that

can be run so far are very limited and do not run efficiently. However, a significant number of

optimizations has been discussed which show good potentialfor performance increases. While

Java on Cell/B.E. will certainly not provide performance on a level with the programming lan-

guages currently supported on Cell/B.E. such as C and C++ even a single-digit speed-up for

suitable programs over traditional JVMs would mean a valuable result.

Unfortunately no JVM except for the other related work itemslisted has been enabled to run

on a heterogeneous architecture such as the CBEA. Providing this support requires a number of

major modifications most of which were too time-expensive tobe completed during the limited

time available for this thesis. This also means that no comprehensive evaluation or estimation

of the performance of Java on Cell/B.E. could be conducted.

Further work on this topic is required and most likely rewarding and this paper gives enough

directions which may be pursued in the future.

6.5 Appendix

6.5.1 Tools

Perl script to convert the SPU ISA to Cacao codegen macros

1 # ! / u s r / b i n / p e r l −w

2 open ( ISA , ”SPU ISA . t x t ” ) ;

3 $ i = 0 ;

4 @l ines =<ISA>;

5 whi le ( $ l i n e = $ l i n e s [ $ i ++] ) {

6 i f ( $ l i n e =˜

7 / ˆ\ s * ( ( 0 | 1 ) ( 0| 1 | \ s ) +)\ s * ( ( ( I \d +) | ( [ SRC ] [ABCT] ) | ( \ / { 3} ) |C)\ s + ( ( [ SRC ] [ABCT] ) | ( \ / { 3} ) | ( \ s * ) ) +)←֓

/ ) {
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8 $opcode = $1 ;

9 @args = s p l i t ( / \ s + / , $4 ) ;

10 $opcode =˜ s /\ s / / g ;

11 $opname =uc ( ( s p l i t ( / \ s + / , $ l i n e s [ $ i−3]) ) [ 0 ] ) ;

12 $opcode =unpack ( ”N” , pack ( ”B32” , s u b s t r ( ”0 ” x 32 . $opcode , −32) ) ) ;

13 $num = s c a l a r ( @args ) ;

14 u n l e s s ( $ l i n e =˜ /\ / / ) {

15 next ;

16 }

17 i f ( $ a r g s [ 0 ] =˜ / I (\ d +) / ) {

18 $imm = $1 ;

19 s h i f t ( @args ) ;

20 $num−−;

21 $ regs1 = $regs2 =l c ( j o i n ( ” , ” , @args ) ) ;

22 $ regs1 =˜ s / \ / { 3} / / g ;

23 $ regs2 =˜ s / \ / { 3} / 0 / g ;

24 p r i n t s u b s t r ( ”# d e f i n e M $opname ( imm , $ regs1 ) ” . ” ” x 40 , 0 , 40) .

25 ”M OP${num} IMM$ {imm} ( $opcode , imm , $ regs2 )\n” ;

26 }

27 e l s e {

28 $ regs1 = $regs2 =l c ( j o i n ( ’ , ’ , @args ) ) ;

29 $ regs1 =˜ s / \ / { 3} , ? / / g ;

30 $ regs2 =˜ s / \ / { 3} / 0 / g ;

31 p r i n t s u b s t r ( ”# d e f i n e M $opname ( $ regs1 ) ” . ” ” x 40 , 0 , 40) . ”MOP$num( $opcode , $ regs2 )\←֓

n” ;

32 }

33 }

34 }

35 c l o s e ( ISA ) ;

Listing 6.1: Perl script to help convert the SPU ISA

6.5.2 Trademarks

• Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.

• PS3 and PLAYSTATION are registered trademarks of Sony Computer Entertainment Inc

• Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment

Inc.

• PowerPC is a trademark of IBM Corp.

• XDR is a trademark of Rambus Inc.

• All other trade names are the service marks, trademarks, orregistered trademarks of their

respective owners

6.5.3 Glossary
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Term Meaning

ABI Application Binary Interface, defines assembler-level interface in-

cluding stack frame layout and dedicated registers

API Application Programming Interface, defines high-level source code

interfaces

Bytecode The intermediate machine-independent language used by Java

CBEA Cell Broadband Engine Architecture, the architectural definition on

which implementations will be based

Cell/B.E. Cell Broadband Engine, the first implementation of the→CBEA

CESOF CBEA Embedded SPE Object Format, the object format for embed-

ding→SPU programs within→PPU programs

CISC Complex Instruction Set Computer, a computing architecture that

supports complex and powerful instructions

Doubleword Defined as a 64-bit type on→Cell/B.E.

EIB Element Interconnect Bus, the bus connecting the different compo-

nents of the→CBEA

ELF Executable and Linkable Format, the common file format for exe-

cutables used in Linux and many variations of Unix

Field In Java a data member of a class, unlike a method member

GC Garbage Collector, responsible for freeing unused heap space

GCC The Gnu Compiler Collection, a number of different compilers pro-

vided by the GNU project

GCJ The Gnu Compiler for Java, an ahead-of-time compiler that can

compile Java source code to native machine code

GiB Gibibyte, 1024→MiB

Halfword Defined as a 16-bit type on Cell/B.E.

HPC High-Performance Computing

IEEE 754 IEEE standard, defines floating-point calculations and semantics

JDK Java Development Kit, consists of a→JRE and additional developer

tools such as a Java compiler

JIT Just-in-time compiler, dynamically compiles methods to machine

code when they are actually called

JRE Java Runtime Environment, consists of a JVM and the compiled

class libraries, allows running Java programs

JVM Java Virtual Machine, the platform for executing Java bytecode

Continued on the next page
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Term Meaning

KiB Kibibyte, 1024 bytes

libspe2 The runtime management library for managing the SPUs

LS Local Store, the small memory directly accessible by the→SPU

Member In Java all fields and methods of a class

MiB Mibibyte, 1024→KiB

MFC Memory Flow Controller, autonomous unit that transfers databe-

tween→LS and main memory

PPE PowerPC Processing Unit, consists of→PPU, L1 cache and→PPSS

PPSS PowerPC Processor Storage Subsystem, includes the→PPU L2

cache and a Bus Interface Unit

PPU PowerPC Processing Element, the actual processing core

Procedure Vector In Cacao terms the entrypoint to a method and the base for the data

segment

Quadword A 128-bit type, containing four (quad) 32-bit→words

RISC Reduced Instruction Set Computer, a computing architecture that

supports only simple and easy to decode instructions

RMI Remote Method Invocation, the Java standard for message passing

in distributed systems

SIMD Single-Instruction-Multiple-Data, class of assembler instructions

which can work on multiple data at once

SPE Synergistic Processing Unit, consists of→MFC,→LS and→SPU

SPU Synergistic Processing Element, the actual processing core

STI Sony, Toshiba and IBM, the consortium that developed the→CBEA

Word Defined as a 32-Bit type on→Cell/B.E.

XDR Extreme Data Rate memory, the kind of memory used for the main

memory of the→Cell/B.E.
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